Modulhandbuch

für den Studiengang

Zell- und Molekularbiologie (M. Sc.)

Stand: 27.03.2020
Modulhandbuch für den
Masterstudiengang Zell- und Molekularbiologie

Department Biologie
Friedrich-Alexander-Universität Erlangen-Nürnberg

Stand: 28.10.2019
Bezug: Prüfungsordnung vom 28. Oktober 2019
Inhaltsverzeichnis

Betreuung des Masterstudienganges Zell- und Molekularbiologie am Department Biologie der FAU Erlangen-Nürnberg .. 5
Präsentation des Masterstudienganges Zell- und Molekularbiologie 6

1 Studienkonzept .. 6
2 Struktur des Studiengangs .. 6

Studienverlaufsplan Master Zell- und Molekularbiologie (M. Sc.) 6

Grundvorlesungen .. 7
- Grundlagenvorlesung I .. 8
- Grundlagenvorlesung II .. 9

Orientierungsmodule .. 11
- BCMA I: Molekulargenetik der Pilz-Pflanze Interaktion ... 12
- BCMA II: Pflanze-Umwelt Interaktionen ... 14
- BCMA III: Analysis and Integration of Sequence and OMICS data 15
- BCMA IV: Bioanalytik .. 16
- Strukturbiologie 1: Proteindesign und Designerproteine .. 17
- Structure Biology 2: Structure and function relationships in biological macromolecules 18
- Entwicklungsbio 1: Musterbildung, Differenzierung und Evolution 19
- Entwicklungsbio 2: Gewebsdifferenzierung und Organogenese 21
- Developmental Biology 3: Visualization of Gene Regulation during Development 22
- Entwicklungsbio 5: Transgene, CRISPR-Editing und RNA-Interferenz in der Entwicklungsbiologie ... 23
- Molekulare Tumorforschung ... 24
- Autoimmunität ... 25
- Genetic Models in Immunobiology ... 26
- Mikrobiologie 1: Pathogenitätsfaktoren bei Gram-negativen Bakterien 27
- Mikrobiologie 2: Pathogenitätsfaktoren bei Gram-positiven Bakterien 28
- MPP 1: Membranproteine .. 29
- MPP 2: Ionenkanäle und Signaltransduktion .. 30
- PBMA: Biosynthese pflanzlicher Naturstoffe ... 31
- Neurobiologie .. 32
- Molekulare Neurophysiologie ... 33
- Cellbiology: Signal protein ... 34
- Zellbiologie: Lichtsignaling in Algen ... 35
- Zellbiologie: Signaltransduktion ... 36

Nicht-biologische Orientierungsmodul ... 37
- Immunologie ... 38
- Immunologie und Molekulare Mikrobiologie von Infektionskrankheiten 39
- Molekulare Humangenetik ... 40
- Palaeobiology ... 41
- Virologie ... 42

Forschungsmodul .. 43
- Forschungsmodul .. 44

Wahlmodule .. 45
- Externes Praktikum ... 46
- Internes Praktikum ... 47
Betreuung des Masterstudienganges Zell- und Molekularbiologie am Department Biologie der FAU Erlangen-Nürnberg

 ➤ **Studiendekan** (Allgemeine Fragen zum Studium)

Prof. Dr. Martin Klingler
Department Biologie, Friedrich-Alexander-Universität Erlangen-Nürnberg
Staudtstraße 5, 91058 Erlangen, Raum A1-02.133
Tel. 09131/ 85 28065, E-Mail bio-studiendekan@fau.de

➤ **Vorsitzender Prüfungsausschuss Master Zell- und Molekularbiologie** (Prüfungsfragen in den Studiengängen)

Prof. Dr. Christian Koch
Department Biologie, Friedrich-Alexander-Universität Erlangen-Nürnberg
Staudtstraße 5, 91058 Erlangen, Raum A2-01.382
Tel. 09131 – 85 28257, E-Mail christian.koch@fau.de

Studien Service Center und Studienkoordination (Organisation und Ablauf der Studiengänge)

Dr. Susanne Morbach
Department Biologie, Friedrich-Alexander-Universität Erlangen-Nürnberg
Staudtstraße 5, 91058 Erlangen, Raum A2-02.183
Tel. 09131 – 85 28818, E-Mail susanne.morbach@fau.de

➤ **Studienberatung**

Prof. Dr. Falk Nimmerjahn (Fachstudienberatung)
Department Biologie, Friedrich-Alexander-Universität Erlangen-Nürnberg
Erwin-Rommel-Straße 3, 91058 Erlangen
Tel. 09131 - 85- 25050, E-Mail falk.nimmerjahn@fau.de
Präsentation des Masterstudiums Zell- und Molekularbiologie

1 Studienkonzept

2 Struktur des Studiengangs

- **Sem.**
- Master of Science
- Zell- und Molekularbiologie

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Forschungsmodul3 (20 ECTS)</td>
<td>Schlüsselqualifikation4 (5 ECTS)</td>
<td>Scientific Presentations (5 ECTS)</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 Auswahl aus 27 Modulen mit Übungen und Seminar oder Vorlesung, i. d. R. 4-wöchig, Block
2 Ein mindestens 6-wöchiges internes oder externes Praktikum mit einem Übungsanteil von ungefähr 10 SWS
3 8 Wochen Laborkurs im gewählten Vertiefungsfach mit Seminar oder Vorlesung
4 Aus dem Schlüsselqualifikationspool der Universität frei wählbares Modul

6
<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Lehrveranstaltung</th>
<th>SWS</th>
<th>GesamtECTS</th>
<th>Workload-Verteilung pro Semester in ECTS-Punkten</th>
<th>Art und Umfang der Prüfung/Studienleistung</th>
<th>Faktor</th>
<th>Modul-Note</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>V</td>
<td>Ü</td>
<td>P</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grundlagenvorlesung I</td>
<td>3</td>
<td>7,5</td>
<td>7,5</td>
<td>7,5</td>
<td>PL: Klausur 90 Minuten</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Grundlagenvorlesung II</td>
<td>3</td>
<td>7,5</td>
<td>7,5</td>
<td>7,5</td>
<td>PL: Klausur 90 Minuten</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Orientierungsmodul 1</td>
<td>7</td>
<td>1</td>
<td>7,5</td>
<td>7,5</td>
<td>PL siehe jeweilige Modulbeschreibungen ¹)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Orientierungsmodul 2</td>
<td>7</td>
<td>1</td>
<td>7,5</td>
<td>7,5</td>
<td>PL siehe jeweilige Modulbeschreibungen ¹)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Orientierungsmodul 3</td>
<td>7</td>
<td>1</td>
<td>7,5</td>
<td>7,5</td>
<td>PL siehe jeweilige Modulbeschreibungen ¹)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Orientierungsmodul 4</td>
<td>7</td>
<td>1</td>
<td>7,5</td>
<td>7,5</td>
<td>PL siehe jeweilige Modulbeschreibungen ¹)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Forschungsmodul</td>
<td>16</td>
<td>4</td>
<td>20</td>
<td>20</td>
<td>PL: Mündliche Prüfung 45 Minuten</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Wahlmodul Internes Praktikum ¹)</td>
<td>10</td>
<td>15</td>
<td>15</td>
<td></td>
<td>Praktikumsprotokoll ca. 10 Seiten oder²) Seminarvortrag ca. 20 Min.</td>
<td>3)</td>
<td>0</td>
</tr>
<tr>
<td>Wahlmodul Externes Praktikum ¹)</td>
<td>10</td>
<td>15</td>
<td>15</td>
<td></td>
<td>Praktikumsprotokoll ca. 10 Seiten oder²) Seminarvortrag ca. 20 Min.</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Englisch UNicert ® III ¹)</td>
<td>8</td>
<td>15</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schlüsselqualifikation ¹)</td>
<td>5</td>
<td>5</td>
<td></td>
<td></td>
<td>SL: mündlich oder schriftlich nach Angebot siehe jeweilige Modulbeschreibungen ¹)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Scientific Presentions</td>
<td>2</td>
<td>5</td>
<td>5</td>
<td></td>
<td>SL: Schriftliches Referat ca. 4 Seiten (unbenotet) SL: Mündliches Referat 20 Min. (unbenotet)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Masterarbeit Wissenschaftlicher Bericht</td>
<td></td>
<td></td>
<td></td>
<td>27</td>
<td>30</td>
<td>PL: Schriftliche Arbeit ca. 50 Seiten SL: Kurzvortrag ca. 30 Min. (unbenotet)</td>
<td>1</td>
</tr>
<tr>
<td>Verteidigung</td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>52</td>
<td>30</td>
<td>10</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>Summe SWS:</td>
<td>120</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2) Ob Praktikumsprotokoll oder Seminarvortrag gefordert wird, entscheidet die bzw. der Studierende im Einvernehmen mit der bzw. dem betreuenden Hochschullehrerin bzw. Hochschullehrer am Department Biologie.

5) Es ist wahlweise entweder das Modul "Wahlmodul Internes Praktikum", das "Wahlmodul Externes Praktikum" oder das Modul "Englisch UNIcert® III" zu belegen.
Grundvorlesungen
Modulbezeichnung | Grundlagenvorlesung I Basic Lecture I | 7,5 ECTS-Punkte
--- | --- | ---
Lehrveranstaltungen | VORL: Zell- und Molekularbiologie I (3 SWS) |
Lehrende | Profs.: A. Burkovski, P. Dietrich, C. Koch, G. Kreimer, L. Nitschke, Dr. Stadler |
Modulverantwortlicher | Prof. Dr. Andreas Burkovski |
Inhalt | Genetische Regulationsmechanismen
- Transkriptionsreaktion, Strategien und Mechanismen der Repression, Strategien der Aktivierung, Signalleitung zu Repressoren und Aktivatoren, Regulation durch RNA Schalter
- Eukaryontische und Gewebespezifische Genregulation, Regulation durch Signalketten, Expressionskontrolle durch alternatives Splicen, Genregulation durch mikroRNAs
- Epigenetische Mechanismen, Chromosomenstruktur, Histonmodifikation, Histonvarianten, Chromatinremodelling, Heterochromatin, Chromatidcohesion, NHEJ, Silent mating type loci beim Mating type switching
Transport
- Membrantransport, Rezeptoren und Signaltransduktion
- Protein-Import in Mitochondrien, Plastiden, ER und Peroxisomen, bakterieller Protein-Exportsysteme, Ubiquitin-Proteasom-System, N-End-Regel, Pest-Sequenzen, ERAD-System, Rezeptor-Abbau über Endosomen, Makro-Autophagie
Zell-Zell-Kommunikation
- Kommunikation zwischen Bakterien (Quorum sensing in Gram-negativen und Gram-positiven Bakterien, Quorum quenching) Quorum sensing, Hormonsignale und Quorum quenching in bei Interaktion Pathogen-Mensch. Kommunikation zwischen Bakterien und Pflanzen (Agrobacterium-Infektion, Rizobien-Leguminosen-Interaktion)
- Kommunikation zwischen Pflanzenzellen durch Plasmodesmen; Technische Verfahren zur Visualisierung des Aufbaus und der Entstehung von Plasmodesmen; Ansätze zur Identifizierung von Plasmodesmen-Proteinen, Proteintransport durch Plasmodesmen bei der Embryonalentwicklung und bei der Regulation des Spross- und des Wurzelspitzenmeristems |
Lernziele und Kompetenzen | Die Studierenden
- sind in der Lage, die wichtigsten genetischen Regulationsmechanismen umfassend und detailliert zu erklären;
- verstehen die Prinzipien des Membrantransports und der Proteinimport- und Exportsysteme im Detail und können diese erklären und unterscheiden;
- verstehen Zell-Zell-Kommunikation, können verschiedene Kommunikationsmechanismen erklären und vergleichen;
- sind in der Lage, experimentellen Methoden der modernen Zellbiologie umfassend darzustellen und zu erklären
- sind fähig, aktuelle Forschungsthemen in allen Bereichen der Zell- und Molekularbiologie zu besprechen und zu hinterfragen. |
Voraussetzungen für die Teilnahme | Keine |
Einsatz in Musterstudienplan | 1. Semester |
Verwendbarkeit des Moduls | Master Zell- und Molekularbiologie |
Studien- und Prüfungsleistungen | PL: Klausur 90 Min. |
Berechnung Modulnote | Ergebnis der Klausur wird in der Gesamtnote doppelt gewichtet |
Turnus des Angebots | jährlich im WS |
Arbeitsaufwand in Zeitstunden | Präsenzzeit: 45 h, Eigenstudium: 180 h |
Dauer des Moduls | 1 Semester |
Unterrichts- und Prüfungssprache | Deutsch |
Literaturhinweise | Keine |
<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Grundlagenvorlesung II Basic Lecture II</th>
<th>7,5 ECTS-Punkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lehrveranstaltungen</td>
<td>VORL: Zell- und Molekularbiologie II (3 SWS)</td>
<td></td>
</tr>
<tr>
<td>Lehrende</td>
<td>Profs.: J.H. Brandstätter, M. Klingler, W. Kreis, Y. Muller, F. Nimmerjahn, U. Sonnewald, T. Winkler, A. Schambony Dr. R. Frischknecht</td>
<td></td>
</tr>
</tbody>
</table>

Modulverantwortlicher

Prof. Dr. Martin Klingler

Inhalt

Entwicklung vielfältiger Organismen
- Intrazelluläre Determinanten und Ausbildung differentieller Signalprozesse bei der asymmetrischen Teilung neuronaler Stammzellen
- Signalnetzwerke bei der Rechts/Links-Asymmetriebildung
- Wechselwirkungen zwischen Signalen bei Entwicklungs- und Krankheitsvorgängen
- Morphogenetik, planare Zellpolarität und Wachstumsregulation in der Organentwicklung

Natürliche Immunität und Pathogenabwehr
- Einführung in die angeborene Immunität, Abwehrmechanismen
- Vergleich zwischen Säugetier- und Pflanzenzellen
- Strategien der Besiedelung von Wirtszellen durch Pathogene

Adaptive Immunität
- Mechanismen der Entstehung der Diversität von B- und T-Zellrezeptoren
- Prinzipien der Antigenerkennung von Antikörpern und T-Zell-Rezeptoren
- Prinzipien der Immunantwort und der immunologischen Toleranz
- Klassenwechsel und somatische Hypermutation

Tumorbiologie
- Definition der malignen Transformation
- Wirkung von Karzinogenen
- Mehrstufige Karzinogenese
- genetische Kontrolle der Metastasenbildung
- Tumorstammzellen
- Signaltransduktion in der Onkogenese
- Rationale Tumortherapie

Neurobiologie
- Anatomische und funktionelle Organisation des SäugetierzNS
- Reizung neuronaler Schaltkreise
- grundlegende Mechanismen der corticalen Plastizität, Lernen und Gedächtnis

Angewandte Zell- und Molekularbiologie
- Proteindesign: Was sind die Herausforderungen?
- Paracelsus challenge
- Directed evolution und phage display
- Computational de novo protein design
- Anwendungsbereiche, rekombinant hergestellte Medikamente, Biomarker, Pathway engineering, Molecular breeding

Lernziele und Kompetenzen

Die Studierenden können...
- verstehen die Prinzipien und Modelle zur Entwicklung vielfältiger Organismen und können diese erklären und unterscheiden;
- sind in der Lage, zwischen verschiedenen Immun- und Abwehrmechanismen zu unterscheiden und diese zu klassifizieren;
- können die Entstehung von Tumoren sowie die rationale Tumortherapie erklären und diskutieren;
- sind fähig, die grundlegende Mechanismen der Neurobiologie und ihre Rolle in lebenden Organismen zu erklären und unterscheiden;
- können die Herangehensweise bei der Strukturaufklärung von Biomolekülen erklären und die Probleme und technischen Einschränkungen diskutieren;
- können die modernen Methoden der angewandten Zell- und Molekularbiologie nachvollziehen und an ausgewählten Beispielen aus aktuellen Forschungsthemen erklären;
7 Voraussetzungen für die Teilnahme
Keine

8 Einpassung in Musterstudienplan
2. Semester

9 Verwendbarkeit des Moduls
Master Zell- und Molekularbiologie

10 Studien- und Prüfungsleistungen
PL: Klausur 90 Min.

11 Berechnung Modulnote
Ergebnis der Klausur wird in der Gesamtnote doppelt gewichtet

12 Turnus des Angebots
jährlich im SS

13 Arbeitsaufwand in Zeitstunden
Präsenzzeit: 45 h
Eigenstudium: 180 h

14 Dauer des Moduls
1 Semester

15 Unterrichts- und Prüfungssprache
Deutsch

16 Literaturhinweise
Keine
Orientierungsmodule
| 1 | Modulbezeichnung | BCMA I: Molekulargenetik der Pilz-Pflanze Interaktion
| | | BCMA-I: Molecular genetics of fungi-plant interaction
| | | 7,5 ECTS-Punkte
| 2 | Lehrveranstaltungen | VORL und SEM (1 SWS)
| | | UE (7 SWS), Anwesenheitspflicht
| 3 | Lehrende | Profs. C. Koch, U. Sonnewald
| | | Dr. S. Sonnewald, Dr. M. Dahl
| 4 | Modulverantwortlicher | Prof. Dr. Christian Koch
| 5 | Inhalt | VORL/SEM:
| | | sink-source Konzept; Pflanzenbiotechnologie, Biomasse-Produktion und Ertragssicherung unter Stress. Antworten von Pflanzen auf abiotischen und biotischen Stress.
| | | UE:
| | | Die Übungen konzentrieren sich auf die experimentelle Analyse der pflanzlichen Abwehrantwort, sowie der zell- und molekulargenetischen Analyse phytopathogener Ascomyceten. Dabei kommen grundlegende Methoden der Molekular- und Zellbiologie zum Einsatz, wie auch spezielle Methoden zur Analyse von Pilz-Pflanze Interaktionen, Ausgewählte Methoden: Genomanalysen, Southernblotting, Fluoreszenzmikroskopie, Konfokale Mikroskopie, RNA Methoden, quantitative real-time PCR; Expressions- und Lokalisationsanalysen mittels Gen- und Proteinfusionen mit GFP und mCherry.
| | | Agrobakterien- vermittelte Transformation.
| 6 | Lernziele und Kompetenzen | Die Studierenden
| | | – können die Grundlagen und aktuelle Erkenntnisse, Konzepte und methodischen Ansätzen bei der Interaktion zwischen Pflanzen und phytopathogenen Pilzen erklären und diskutieren;
| | | – sind in der Lage, neueste Forschungsergebnisse in diesem Fachgebiet kritisch zu besprechen und zu hinterfragen;
| | | – verstehen die aktuellen methodischen Ansätze, um die Interaktion von Pflanzen mit Pathogenen funktionell zu untersuchen;
| | | – können den Inhalt eines wissenschaftlichen Primärartikels erarbeiten, die verwendeten Methoden/Ergebnisse erklären und kritisch bewerten und in einem Referat fachgruppengerecht präsentieren und diskutieren;
| | | – sind aufgrund der regelmäßigen aktiven Teilnahme fähig, spezifische biochemische und molekularbiologische Methoden und Experimente zu planen und durchzuführen;
| | | – können mit anwendungsspezifischen wissenschaftlichen Messgeräten umgehen;
| | | – können die Versuche des Übungsteils auswerten und die Ergebnisse in einem Protokoll darstellen sowie kritisch diskutieren.
| 7 | Voraussetzungen für die Teilnahme | Keine
| 8 | Einpassung in Musterstudienplan | 1. Semester
| 9 | Verwendbarkeit des Moduls | Master Zell- und Molekularbiologie
| 10 | Studien- und Prüfungsleistungen | PL: mündliche Prüfung (30 Min.)
| | | Sl.: mündlicher Seminarvortrag (20 Min.)
| | | Sl.: schriftliches Protokoll (ca. 30 Seiten)
| 11 | Berechnung Modulnote | Note der mündlichen Prüfung
| 12 | Turnus des Angebots | jährlich im WiSeS
| 13 | Arbeitsaufwand in Zeitstunden | Präsenzzeit: 120 h
| | | Eigenstudium 105 h
| 14 | Dauer des Moduls | 1 Semester, vierwöchiges Blockpraktikum
| 15 | Unterrichts- und Prüfungssprache | Deutsch

12
<table>
<thead>
<tr>
<th>16</th>
<th>Literaturhinweise</th>
<th>Keine</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Modulbezeichnung</th>
<th>Lehrveranstaltungen</th>
<th>Lehrende</th>
<th>Modulverantwortliche</th>
<th>Inhalt</th>
<th>Lernziele und Kompetenzen</th>
<th>Voraussetzungen für die Teilnahme</th>
<th>Einpassung in Musterstudienplan</th>
<th>Verwendbarkeit des Moduls</th>
<th>Studien- und Prüfungsleistungen</th>
<th>Berechnung Modulnote</th>
<th>Turnus des Angebots</th>
<th>Arbeitsaufwand in Zeitstunden</th>
<th>Dauer des Moduls</th>
<th>Unterrichts- und Prüfungssprache</th>
<th>Literaturhinweise</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>BCMA II: Pflanze-Umwelt Interaktionen</td>
<td>VORL und SEM (1 SWS) UE (7 SWS), Anwesenheitspflicht</td>
<td>Profs. U. Sonnewald, C. Koch PD Dr. S. Sonnewald</td>
<td>Dr. Sophia Sonnewald</td>
<td>sink-source Konzept; Pflanzenbiotechnologie, Biomasse-Produktion und Ertragssicherung unter Stress; Antworten von Pflanzen auf abiotischen und biotischen Stress; Abwehrmechanismen der Pflanze gegenüber Pathogenen. Virulenzstrategien bakterieller und pilzlicher Pathogene, Einführung in moderne Analysemethoden (Omics-Technologien), Diskussion von Schlüßelpublikationen zum Themengebiet</td>
<td>Die Studierenden können die Grundlagen und die aktuellen Erkenntnisse, Konzepte und methodischen Ansätzen bei der Antwort von Pflanzen auf abiotischen Stress erklären; sind in der Lage, neueste Forschungsergebnisse in diesem Fachgebiet kritisch zu besprechen und zu hinterfragen; können den Inhalt eines Fachartikels selbstständig erarbeiten, die verwendeten Methoden/Ergebnisse erklären, kritisch bewerten und in einem Referat fachgruppengerecht präsentieren und diskutieren; sind aufgrund der regelmäßigen aktiven Teilnahme fähig, spezifische biochemische und molekularbiologische Methoden und Experimente zu verstehen, planen und durchzuführen; können mit anwendungsspezifischen wissenschaftlichen Messgeräten umgehen; können molekularbiologische Versuche auswerten und die Ergebnisse in einem Protokoll darstellen sowie kritisch diskutieren.</td>
<td>Keine</td>
<td>1. Semester</td>
<td>Master Zell- und Molekularbiologie</td>
<td>PL: mündliche Prüfung (30 Min.) Sl: mündlicher Seminarvortrag (20 Min.) Sl: schriftliches Protokoll (ca. 30 Seiten)</td>
<td>Note der mündlichen Prüfung</td>
<td>jährlich im WiSe</td>
<td>Präsenzzeit: VORL/SEM + UE = 120h Eigenstudium: 105 h</td>
<td>1 Semester, vierwöchiges Blockpraktikum</td>
<td>Deutsch</td>
<td>Keine</td>
</tr>
</tbody>
</table>
| | Module name | BCMA III: Analysis and Integration of Sequence and OMICS data
| | | BCMA III: Analyse und Integration von Sequenz- und OMICS Daten
| | 7.5 ECTS-Punkte | |
| 2 | Courses/lectures | Laboratory course: 7 SWS
| | | Seminar: 1 SWS (for both, attendance is compulsory)
| 3 | Lectureres | Prof. Dr. U. Sonnewald
| | | Dr. J. M. Corral García
| 4 | Module co-ordinator | Prof. Dr. Uwe Sonnewald
| 5 | Contents | - Introduction to bioinformatics, sequence analysis and sequence formats.
| | | - Primer design, sequence alignments and sequence assembly.
| | | - Sequence databases, similarity search (BLAST) and DNA barcoding.
| | | - Experimental design for omics projects.
| | | - Gene analysis and alternative splicing.
| | | - Regulation of gene expression.
| | | - Promoter analysis and prediction of TBFs and microRNA targets.
| | | - Genetic markers (SNPs, microsatellites and INDELs).
| | | - Next Generation Sequencing (NGS) data processing.
| | | - Genome mapping and annotation.
| | | - Transcriptome analysis methods (Microarray and RNA-seq).
| | | - Epigenetic local and high-throughput analysis.
| | | - Molecular diagnosis and personalized medicine.
| | | - SNPs analysis for disease human prediction.
| | | - Mutagenesis and directed evolution.
| | | - Strategic workflow and establishment of analytical bioinformatics pipelines.
| 6 | Learning targets and skills | Students able to:
| | | - use databases, online tools and software for sequence analysis.
| | | - practice with similarity search of sequences (BLAST).
| | | - predict and categorize sequence features as gene-structures, reading frames, active sites, post-translational modification sites, distribution of exons and introns, and regulatory elements.
| | | - discover genetic markers by identification of sequence variations as SNPs, INDELs or microsatellites.
| | | - predict different levels of mRNA and protein structures.
| | | - analyze and compute Next Generation Sequencing datasets.
| | | - relate and integrate genomic and transcriptomic data with phenotype.
| | | - generate analytical workflows combining different applications and formats.
| | | - practice with different sequence datasets and develop an own hypothetical project of sequence analysis with bioinformatics tools.
| | | - prepare a presentation and a written scientific report describing and discussing the results obtained in the practical project with own data.
| 7 | Recommended prerequisites | None
| 8 | Integration in curriculum | 2. semester
| 9 | Module compatibility | Master Zell- und Molekularbiologie
| 10 | Method of examination | PL: oral examination (30 min.)
| | | PL: written protocol (approx. 3-5 pages)
| 11 | Grading procedure | 30% oral examination / 70% written protocol
| 12 | Module frequency | SoSe
| 13 | Workload | Contact hours: 120 h
| | | Independent study: 105 h
| 14 | Module duration | 1 semester (4 consecutive weeks)
| 15 | Teaching language | English
| 16 | Recommended reading | None

15
<table>
<thead>
<tr>
<th></th>
<th>Modulbezeichnung</th>
<th>Lehrveranstaltungen</th>
<th>Lehrende</th>
<th>Modulverantwortlicher</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>BCMA IV: Bioanalytik
BCMA IV Bioanalytics</td>
<td>VORL und SEM (1 SWS)
UE (7 SWS), Anwesenheitspflicht</td>
<td>Prof. Dr. U. Sonnewald
Drs. S. Sonnewald, J. Hofmann</td>
<td>Prof. Dr. Uwe Sonnewald</td>
</tr>
<tr>
<td>2</td>
<td>7,5 ECTS-Punkte</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Inhalt</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>VORL/SEM:
Grundlagen zu Transformationstechniken von Pflanzen; Chancen, Nutzen und Risiken der Gentechnik, Optimierungsstrategien zur Nutzung von Pflanzen als Bioreaktoren, Metabolit-Analytik durch moderne chromatographische Verfahren wie HPLC und Massenspektrometrie, Trankriptom-Analyse durch DNA Mikroarrays UE:
Erfassung von physiologischen und molekularen Veränderungen in Pflanzen am Beispiel aktueller wissenschaftlicher Projekte. Dazu werden Metabolite aus Pflanzen extrahiert und mittels HPLC und Massenspektrometrie quantitativ analysiert. Parallel wird RNA isoliert und mit Fluoreszenz-Farbstoffen markierte cRNA Sonden zur Hybridisierung von Mikroarrays hergestellt. Wichtiger Bestandteil des Moduls ist die Daten-Auswertung. Hierzu wird eine Einführung in geeignete statistische Verfahren und in die bioinformatische Analyse multivariater Datensätze per Hierarchischer Clusteranalyse (HCA) und Hauptkomponentenanalyse (PCA) gegeben.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Lernziele und Kompetenzen</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Die Studierenden
− können die Grundlagen, Konzepte und methodischen Ansätze in der Bioanalytik und der Pflanzenbiotechnologie erklären und diskutieren;
− sind in der Lage, neueste Forschungsergebnisse in diesem Fachgebieten kritisch zu besprechen und zu hinterfragen;
− verstehen die aktuellen methodischen Grundlagen zur Analyse von Metaboliten und transkriptionellen Veränderungen;
− können den Inhalt eines wissenschaftlichen Primärartikels erarbeiten, die verwendeten Methoden/Ergebnisse erklären und kritisch bewerten und in einem Referat fachgruppengerecht präsentieren und diskutieren;
− sind aufgrund der regelmäßigen aktiven Teilnahme fähig, spezifische biochemische und molekularbiologische Methoden und Experimente zu verstehen, planen und durchzuführen;
− können mit anwendungsspezifischen wissenschaftlichen Messgeräten sowie mit Programmen zur Datenauswertung umgehen;
− können molekularbiologische Versuche auswerten und die Ergebnisse in einem Protokoll darstellen sowie kritisch diskutieren.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Voraussetzungen für die Teilnahme</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Keine</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Einpassung in Musterstudienplan</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>2. Semester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Verwendbarkeit des Moduls</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Master Zell- und Molekularbiologie</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Studien- und Prüfungsleistungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>PL: mündliche Prüfung (30 Min.)
Sl: mündlicher Seminarvortrag (20 Min.)
Sl: schriftliches Protokoll (ca. 30 Seiten)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Berechnung Modulnote</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Note der mündlichen Prüfung</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Turnus des Angebots</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Jährlich im SoSe</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Arbeitsaufwand in Zeitsunden</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>Präsenzzeit: VORL/SEM + UE = 120h
Eigenstudium: 105 h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Dauer des Moduls</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>1 Semester, vierwöchiges Blockpraktikum</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Unterrichts- und Prüfungssprache</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Literaturhinweise</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>Keine</td>
</tr>
</tbody>
</table>

16
<table>
<thead>
<tr>
<th></th>
<th>Modulbezeichnung</th>
<th>Strukturbiologie 1: Proteindesign und Designerproteine Structural biology 1: Protein design and designer proteins</th>
<th>7,5 ECTS-Punkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Lehrveranstaltungen</td>
<td>VORL und SEM (1 SWS) UE (7 SWS), Anwesenheitspflicht</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Lehrende</td>
<td>Profs. R. Böckmann, Y. Muller Dr. B. Schmid</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Modulverantwortlicher</td>
<td>Prof. Dr. Yves. Muller</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Lernziele und Kompetenzen</td>
<td>Die Studierenden können die neuesten Erkenntnisse, Konzepte und methodischen Ansätze beim Design von Proteinen mit neuen Eigenschaften erklären und diskutieren; sind in der Lage, neueste Forschungsergebnisse in diesem Fachgebiet kritisch zu besprechen und zu hinterfragen; verstehen die aktuellsten Arbeitsmethoden und deren Anwendungen beim Designen von Proteinen; können den Inhalt eines wissenschaftlichen Primärartikels erarbeiten, die verwendeten Methoden/Ergebnisse erklären und kritisch bewerten und in einem Referat fachgruppengerecht präsentieren und diskutieren; sind aufgrund der regelmäßigen aktiven Teilnahme fähig, spezifische strukturbiologische Experimente zu planen und durchzuführen; können mit anwendungsspezifischen wissenschaftlichen Messgeräten sowie mit Programmen zur Struktursimulation umgehen; können strukturbiologische Versuche auswerten und die Ergebnisse in einem Protokoll darstellen sowie kritisch diskutieren.</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Voraussetzungen für die Teilnahme</td>
<td>Keine</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Einpassung in Musterstudienplan</td>
<td>1. Semester</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Verwendbarkeit des Moduls</td>
<td>Master Zell- und Molekularbiologie</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Studien- und Prüfungsleistungen</td>
<td>Pl.: schriftliche Prüfung (45 Min.)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pl.: mündlicher Seminarvortrag (20 Min.)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pl.: schriftliches Protokoll (ca. 15-20 Seiten)</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Berechnung Modulnote</td>
<td>- Schriftliche Prüfung: 40 %, - mündlicher Seminarvortrag: 20 %, - schriftliche Protokolldurchsicht: 40 %</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Turnus des Angebots</td>
<td>Jährlich im WiSe</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Arbeitsaufwand in Zeitstunden</td>
<td>Präsenzzeit: VOR/SEM + UE = 120 h</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Eigenstudium: 105 h</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Dauer des Moduls</td>
<td>1 Semester, vierwöchiges Blockpraktikum</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Unterrichts- und Prüfungssprache</td>
<td>Deutsch</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Literaturhinweise</td>
<td>Keine</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
</tbody>
</table>
| 1 | **Module name** | Structure Biology 2: Structure and function relationships in biological macromolecules
Strukturbiologie 2: Struktur- und Funktionsbeziehungen in biologischen Makromolekülen |
| | **ECTS Points** | 7.5 |
| 2 | **Courses/lectures** | Laboratory course: 7 SWS
Seminar: 1 SWS for both, attendance is compulsory |
| 3 | **Lecturers** | Profs. R. Böckmann, Y. Muller
Dr. B. Schmid |
| 4 | **Module co-ordinator** | Prof. Dr. Yves Muller |
| 5 | **Contents** | Seminar talks cover theoretical and methodological approaches for the study of structure-function relationships in proteins with a focus on the structural determinants that are responsible for the regulation of protein function.
Laboratory course focuses on advanced methods to study structure-dynamics-function relationships in proteins. Both experimental (heterologous protein production in eukaryotic cells, X-ray analysis, mutation studies) as well as theoretical methods (atomistic and coarse-grained molecular dynamics simulations) will be addressed. Additionally, students are introduced to X-ray crystallography and investigating protein stability via CD spectroscopy in hands-on lab-training units.
The focus of the practical course will be the active participation in ongoing research projects in the participating labs. |
| 6 | **Learning targets and skills** | The students are
− acquainted with current knowledge, concepts and methods for studying structure-function relationships in biological macromolecules.
− are able to critically evaluate novel findings published in the field of structural biology.
− acquainted with state-of-the-art methods for studying structure-function relationships in biological macromolecules.
− are able to understand the lay-out and follow the content of a research publication in the field of structure-function relationships, are able to understand the methods and the results obtained by these methods and are able to discuss the quality of the reported results and their implications in a presentation.
− are able to plan and conduct experiments in structural biology as a result of a continuous and active participation in the current module.
− are able to actively operate scientific instruments and handle computer programs required for studying structure-function relationships.
− are able to evaluate the data obtained in a wide range of experiments, to document the results in a report and to critically discuss any scientific implications. |
| 7 | **Recommended prerequisites** | None |
| 8 | **Integration in curriculum** | 2. Semester |
| 9 | **Module compatibility** | Master Zell- und Molekularbiologie
Master Integrated Life Sciences |
| 10 | **Method of examination** | PL: written examination (45 min.)
PL: seminar talk (20 min.)
PL: written protocol (approx. 15-20 pages) |
| 11 | **Grading procedure** | written examination 40 %, seminar talk 20 %, written protocol 40 % |
| 12 | **Module frequency** | SoSe |
| 13 | **Workload** | Contact hours: 120 h
Independent study: 105 h |
| 14 | **Module duration** | 1 semester (4 consecutive weeks) |
| 15 | **Teaching language** | English |
| 16 | **Recommended reading** | None |
1 Modulbezeichnung | Entwicklungsbiologie 1: Musterbildung, Differenzierung und Evolution
Developmental biology 1: Pattern formation, differentiation and evolution | 7,5 ECTS-Punkte
---|---|---
2 Lehrveranstaltungen | SEM (1 SWS)
UE (7 SWS), Anwesenheitspflicht |
3 Lehrende | Prof. M. Klingler
Drs. I. Reim, N. N. |
4 Modulverantwortlicher | PD Dr. Ingolf Reim |
5 Inhalt | SEM:
Dabei werden v.a. genetische Methoden (Mutanten, RNA-Interferenz, transgene Insekten, CRISPR-Editing), Mikroskopie (3D Fluoreszenzmikroskopie, ApoTome, Konfokales Mikroskop, Transmissionselektronenmikroskopie - TEM), Mikroinjektion, Immunhistologie / in situ-Färbungen, sowie weitere molekularbiologische und bioinformatische Methoden zum Einsatz kommen. |
6 Lernziele und Kompetenzen | Die Studierenden
− sind fähig, anhand aktueller Publikationen entwicklungsbiologische Forschungsergebnisse in englischer Sprache zu präsentieren und kritisch zu hinterfragen;
− sind in der Lage, die aktuellen Konzepte der Entwicklungsbiologie und der evolutionären Entwicklungsbio(“Evo-Devo“) zu erklären und zu diskutieren;
− können eine Vielzahl an Arbeitsmethoden zur Analyse entwicklungs-biologischer Probleme darstellen;
− können den Inhalt eines wissenschaftlichen Primärartikels erarbeiten, die verwendeten Methoden/Ergebnisse erklären und kritisch bewerten und in einem Referat fachgruppengerecht präsentieren und diskutieren;
− sind in der Lage, weitgehend selbständig Arbeitshypothesen zu entwickeln, Experimente zu planen, durchzuführen und deren Ergebnisse im Kontext zu diskutieren;
− können anwendungs-spezifische Messgeräte bedienen;
− können zellbiologische Versuche auswerten und die Ergebnisse in einem Protokoll darstellen sowie kritisch diskutieren. |
7 Voraussetzungen für die Teilnahme | Keine |
8 Einpassung in Musterstudienplan | 2. Semester |
9 Verwendbarkeit des Moduls | Master Zell- und Molekularbiologie
Master Integrated Life Sciences |
10 Studien- und Prüfungsleistungen | Sl: mündlicher Seminarvortrag (20 Min.)
Pl: mündliche Prüfung (30 Min.)
Pl: schriftliches Protokoll (ca. 10 Seiten Text) |
11 Berechnung Modulnote | Mündliche Prüfung und das Protokoll gehen zu jeweils 50 % in die Benotung ein |
12 Turnus des Angebots | jährlich im WiSe |
13 Arbeitsaufwand in Zeitstunden | Präsenzzeit: Seminar & Übung: 120 h
Eigenstudium: 105 h |
14 Dauer des Moduls | 1 Semester, vierwöchiges Blockpraktikum |
15 Unterrichts- und Prüfungssprache | Deutsch |
| Literaturhinweise | Keine |
| 1 | Modulbezeichnung | Entwicklungsbiologie 2: Gewebsspezifizierung und Organogenese
Developmental biology 2: Tissue differentiation and organogenesis | 7,5 ECTS-Punkte |
|---|---|---|---|
| 2 | Lehrveranstaltungen | SEM (1 SWS)
UE (7 SWS), Anwesenheitspflicht |
| 3 | Lehrende | Prof. A. Schambony
Drs. C. Schaub, N.N. |
| 4 | Modulverantwortliche | Prof. Dr. Alexandra Schambony |
| 5 | Inhalt | SEM:
In den Studentenvorträgen werden Themen zur molekularen Steuerung von
Entwicklungsvorgängen, Differenzierung und Organogenese behandelt. Schwerpunkte
liegen dabei auf der Stammzell differenzierung, Muskel-, Neural- und Nierenentwicklung in
Invertebraten- und Vertebratenmodellen sowie entwicklungbiologischer Methoden.
Sprache: Englisch.
UE:
Projekte in Kleingruppen zu aktuellen Forschungen in den jeweiligen Arbeitsgruppen,
wobei Genfunktionen, Transkriptions- und Signalprozesse in den o.g.
Entwicklungsvorgängen untersucht werden. Als Modellorganismen dienen die Insekten
Drosophila und Tribolium (?) sowie der Krallenfrosch Xenopus. Es kommen genetische
Methoden (Mutanten, transgene Insekten, Morpholino-Antisensenukleotide), Mikroskopie
(3D-Fluoreszenzmikroskopie, Konfokale Laser Scanning Mikroskopie), Mikroinjektion,
Molekularbiologie (Inverse PCR, Genklonierung und -sequenzierung), Mikroskopie
(Fluoreszenzmikroskopie, Konfokales Mikroskop), Mikroinjektionen, sowie weitere
molekularbiologische und biochemische Analysemethoden zum Einsatz. |
| 6 | Lernziele und Kompetenzen | Die Studierenden
– sind in der Lage, anhand aktueller Publikationen entwicklungsgeschichtliche
Forschungsergebnisse in englischer Sprache zu präsentieren und kritisch zu
hinterfragen;
– sind fähig, die aktuelle Konzepte der Entwicklungsbiologie und der molekularen Grundlagentheorie
zur Entwicklungssteuerung zu unterscheiden und diskutieren;
– können den Inhalt eines wissenschaftlichen Primärartikels erarbeiten, die verwendeten
Methoden/Ergebnisse erklären und kritisch bewerten und in einem Referat
fachgruppengerecht präsentieren und diskutieren;
– können eine Vielzahl an Arbeitsmethoden zur Analyse entwicklungs-geschichtlicher
Probleme darstellen;
– können Arbeitshypothesen entwickeln, Experimente planen, durchführen und deren
Ergebnisse im Kontext diskutieren;
– können anwendungs-spezifische Messgeräte bedienen;
– können zellbiologische Versuche auswerten und die Ergebnisse in einem Protokoll
darstellen sowie kritisch diskutieren. |
| 7 | Voraussetzungen für die Teilnahme | Keine |
| 8 | Einpassung in Musterstudienplan | 2. Semester |
| 9 | Verwendbarkeit des Moduls | Master Zell- und Molekularbiologie |
| 10 | Studien- und Prüfungsleistungen | SL: mündlicher Seminarvortrag (20 Min.)
PL: mündliche Prüfung (30 Min.)
PL: schriftliches Protokoll (ca. 10-30 Seiten) |
| 11 | Berechnung Modulnote | Mündliche Prüfung und Protokoll gehen zu jeweils 50 % in die Benotung ein |
| 12 | Turnus des Angebots | Jährlich im SoSe |
| 13 | Arbeitsaufwand in Zeitstunden | Präsenzzeit: Seminar & Übung: 120 h
Eigenstudium: 105 h |
<p>| 14 | Dauer des Moduls | 1 Semester, vierwöchiges Blockpraktikum |
| 15 | Unterrichts- und Prüfungssprache | Deutsch |
| 16 | Literaturhinweise | Keine |</p>
<table>
<thead>
<tr>
<th></th>
<th>Module name</th>
<th>Developmental Biology 3: Visualization of Gene Regulation during Development Entwicklungsbiologie 3: Visualisierung der Genregulation bei der Entwicklung</th>
<th>7.5 ECTS credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Courses/lectures</td>
<td>Laboratory course: 7 SWS Seminar: 1 SWS (for both, attendance is compulsory)</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Lecturers</td>
<td>Dr. E. El-Sherif</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Module co-ordinator</td>
<td>Prof. Dr. Martin Klingler</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Contents</td>
<td>Seminar talks will cover basic principles of transcription in eukaryotes and different methods to investigate them, with more focus on imaging-based techniques. DNA/RNA labelling techniques and confocal and super-resolution microscopy will be discussed, emphasising on how they are applied to the study of gene regulation during development. Basics of computational methods to analyse microscopy data using Matlab and ImageJ will be covered. In the laboratory course, we start with applying single molecule FISH to label mRNA and enhancer RNA in fixed Drosophila embryos. Students will then use confocal and STED microscopy to visualize transcription products, then use Matlab and ImageJ to process the data they collected. The final phase is the data analysis, where students will investigate the correlation between enhancer, gene, and enhancer RNA activities and their co-localization in the nucleus, and how this sheds light on important events in the transcription cycle.</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Learning targets and skills</td>
<td>Students will • have a basic understanding of principles of gene regulation in eukaryotes. • be familiar with experiments to investigate gene regulation, especially imaging-based techniques. • understand and apply RNA/DNA labeling techniques in fixed embryos (single-molecule FISH). • understand and apply confocal and super-resolution microscopy (STED and STORM). • understand and apply Image processing techniques for analyzing microscopy data (using Matlab and ImageJ).</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Recommended prerequisites</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Integration in curriculum</td>
<td>From semester 1 onwards</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Module compatibility</td>
<td>MA. Integrated Life Sciences MA Zell- und Molekularbiologie</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Method of examination</td>
<td>PL: written examination of 45 min. PL: protocol of 10-15 pages SL: seminar talk of ca. 30 min. (ungraded task)</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Grading procedure</td>
<td>Oral examination 50% Protocol 50%</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Module frequency</td>
<td>once per year, WiSe</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Workload</td>
<td>Contact hours: 120 h Independent study: 105 h</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Module duration</td>
<td>1 semester (4 consecutive weeks)</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Teaching language</td>
<td>English</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Recommended reading</td>
<td>Introductory review articles will be provided electronically</td>
<td></td>
</tr>
</tbody>
</table>
| 1 | Modulbezeichnung | Entwicklungsbiologie 5: Transgene, CRISPR-Editing und RNA-Interferenz in der Entwicklung biologie
Developmental Biology 5: Transgenes, CRISPR-editing and RNA-interference in Developmental Biology | 7,5 ECTS Punkte |
| 2 | Lehrveranstaltungen | SEM (1 SWS)
UE (7 SWS), Anwesenheitspflicht |
| 3 | Lehrende | Prof. M. Klingler
Drs. R. Rübsam, M. Schoppmeier |
| 4 | Modulverantwortlicher | Prof. M. Klingler |
| 5 | Inhalt | SEM:
In den Studentenvorträgen werden entwicklungsbiologische Themen in den Bereichen
Gen-regulatorische Mechanismen, Gonadenentwicklung, frühembryonalen Musterbildung,
Beinsegmentierung, Evolution entwicklungsbiologischer Prozesse, o.ä. behandelt, mit
Schwerpunkt auf einer detaillierten Diskussion der jeweils verwendeten Methoden.
Sprache: Englisch.
UE: Versuche zu aktuellen Projekten in unseren Arbeitsgruppen, wobei i.d.R. Projekte aus
folgenden Themengebieten bearbeitet werden:
Segmentierung mittels "segmentation clock" im Mehlikäfer Tribolium,
Extremitätenentwicklung und Gonadenentwicklung bei Insekten.
Dabei werden v.a. genetische Methoden (Mutanten, RNA-Interferenz, transgene Insekten,
CRISPR-Editing), Mikroskopie (3D Fluoreszenzmikroskopie, ApoTome, Konfokales
Mikroskop, Transmissionselektronenmikroskopie - TEM), Mikroinjektion, Immunhistologie
/ in situ-Färbungen, sowie weitere molekularbiologische und bioinformatische Methoden
zum Einsatz kommen. |
| 6 | Lernziele und Kompetenzen | Die Studierenden
− sind fähig, anhand aktueller Publikationen entwicklungsbiologische
Forschungsergebnisse in englischer Sprache zu präsentieren und kritisch zu
hinterfragen;
− sind in der Lage, die aktuellen Konzepte der Entwicklung biologie und der
evolutionären Entwicklung biologie („Evo-Devo“) zu erklären und zu diskutieren;
− können eine Vielzahl genetischer Arbeitsmethoden zur Analyse
entwicklungsbiologischer Probleme darstellen und anwenden;
− können den Inhalt eines wissenschaftlichen Primärartikels erarbeiten, die verwendeten
Methoden/Ergebnisse erklären und kritisch bewerten und in einem Referat
fachgruppengerecht präsentieren und diskutieren;
− sind in der Lage, weitgehend selbständig Arbeitshypothesen zu entwickeln,
Experimente zu planen, durchzuführen und deren Ergebnisse im Kontext zu diskutieren;
− können anwendungs-spezifische Geräte bedienen;
− können zellbiologische Versuche auswerten und die Ergebnisse in einem Protokoll
darstellen sowie kritisch diskutieren. |
| 7 | Voraussetzungen für die Teilnahme | Keine |
| 8 | Einpassung in Musterstudienplan | 1. oder 2. Semester |
| 9 | Verwendbarkeit des Moduls | Master Zell- und Molekularbiologie
Master Integrated Life Sciences |
| 10 | Studien- und Prüfungsleistungen | SL: mündlicher Seminarvortrag (20 Min.)
Pl: schriftliche Prüfung (60 min)
Pl: schriftliches Protokoll (ca. 10 Seiten Text) |
| 11 | Berechnung Modulnote | Mündliche Prüfung und das Protokoll gehen zu jeweils 50 % in die Note ein |
| 12 | Turnus des Angebots | jährlich im SoSe |
| 13 | Arbeitsaufwand in Zeitstunden | Präsenzzeit: Seminar & Übung: 120 h
Eigenstudium: 105 h |
| 14 | Dauer des Moduls | 1 Semester, vierwöchiges Blockpraktikum |
| 15 | Unterrichts- und Prüfungssprache | Deutsch |
| 16 | Literaturhinweise | Keine |
| | Modulbezeichnung | Molekulare Tumorforschung
Molecular tumor research | 7,5 ECTS-Punkte |
|---|-----------------|---|-----------------|
| 2 | Lehrveranstaltungen | VORL/SEM (1 SWS)
UE (7 SWS), Anwesenheitspflicht | |
| 3 | Lehrende | Prof. Dr. R. Slany | |
| 4 | Modulverantwortlicher | Prof. Dr. Robert Slany | |
| 5 | Inhalt | VORL/SEM:
Grundlagen der molekularen Tumorbiologie, Onkogene, Tumorsuppressor-gene, genetische Kontrolle der Zellproliferation, Epidemiologie und Morphologie von Tumoren, molekulare Hämatopoiese, Stammzellen und Zell differenzierung
UE:
- Anreicherung von Stammzellen durch magnetische Selektion
- Fluoreszenz aktiviertes cell sorting
- RNA Isolierung, cDNA Synthese
- Grundlagen der quantitativen „real time“ PCR
- Gentransfer mit retroviralen Vektoren
- Molekulare Angiogeneseassays
- Chorioallantoismembran Injektionstests
Die UE ist fakultätsübergreifend. | |
| 6 | Lernziele und Kompetenzen | Die Studierenden
– können die aktuellen Methoden der Tumorforschung erklären und diskutieren;
– sind in der Lage, die theoretischen Grundlagen der genetischen Steuerung der Zellproliferation und -differenzierung zu diskutieren;
– können den Inhalt eines wissenschaftlichen Buchkapitels erarbeiten, kritisch bewerten und in einem Referat fachgruppengerecht präsentieren und diskutieren;
– sind in der Lage anspruchsvolle Techniken moderner Zell- und Molekularbiologie anzuwenden;
– können anwendungsspezifische Messgeräte bedienen;
– können komplexe Versuchsergebnisse auswerten und in den Kontext der bekannten Literatur stellen. | |
| 7 | Voraussetzungen für die Teilnahme | eine molekularbiologisch orientierte Bachelorarbeit wird dringend empfohlen | |
| 8 | Einpassung in Musterstudienplan | 2. Semester | |
| 9 | Verwendbarkeit des Moduls | Master Zell- und Molekularbiologie, Molekulare Medizin | |
| 10 | Studien- und Prüfungsleistungen | PL: schriftliche Prüfung (45 Min.)
SL: mündlicher Seminarvortrag (20 Min.)
SL: schriftliches Protokoll (ca. 30 Seiten) | |
| 11 | Berechnung Modulnote | Schriftliche Prüfung 100% | |
| 12 | Turnus des Angebots | Jährlich im SoSe | |
| 13 | Arbeitsaufwand in Zeitstunden | Präsenzzeit: VOR/SEM + UE = 120 h
Eigenstudium: 105 h | |
| 14 | Dauer des Moduls | 1 Semester, vierwöchiges Blockpraktikum | |
| 15 | Unterrichts- und Prüfungssprache | Deutsch | |
| 16 | Literaturhinweise | Robert A. Weinberg: The Biology of Cancer, Garland Science | |
| 1 | Modulbezeichnung | Autoimmunität
Autoimmunity | 7,5 ECTS-Punkte |
|---|------------------|----------------|
| 2 | Lehrveranstaltungen | VORL und SEM (1 SWS)
UE (7 SWS), Anwesenheitspflicht |
| 3 | Lehrende | Prof. Dr. F. Nimmerjahn
Drs. M. Biburger, A. Lux |
| 4 | Modulverantwortlicher | Prof. Dr. Falk Nimmerjahn |
| 5 | Inhalt | **VORL/SEM:**
Vorlesungen zum Thema Grundlagen Antikörper-induzierter Effektorfunktionen,
Autoimmunität, Autoimmunerkrankungen, Experimentelle Modelle für
Autoimmunerkrankungen, Verlust der Toleranz im humoralen Immunsystem, Entstehung
von Autoantikörpern. Zusätzlich wählen die Studenten einen der Themenbereiche stellen
hierzu Primärartikel in einem mündlichen Vortrag vor.
UE:
Die Übungen beinhalten Experimente, die sich mit den Mechanismen der
Autoantikörperaktivität in vivo befassen. Es werden verschiedene Autoantikörpervarianten
hergestellt und in Mäusen getestet. Die Aktivität der Autoantikörper wird mittels
Durchflusszytometrie und Immunfluoreszenzmikroskopie in verschiedenen genetisch
veränderten Mausstämmen untersucht. |
| 6 | Lernziele und Kompetenzen | Die Studierenden
− können die Mechanismen, die zur Autoimmunität führen, erklären und diskutieren;
− sind befähigt, die aktuelle Literatur und den Stand der Technik auf dem Gebiet der
Autoimmunität zu erklären;
− können selbstständig Experimente planen und durchführen;
− sind in der Lage anwendungs-spezifische Messgeräte zu bedienen;
− können den Inhalt eines wissenschaftlichen Primärartikels erarbeiten, die verwendeten
Methoden/Ergebnisse erklären und kritisch bewerten und in einem Referat
fachgruppengerecht präsentieren und diskutieren;
− sind fähig, eigene Ergebnisse zu protokollieren, kritisch zu diskutieren und zu bewerten. |
| 7 | Voraussetzungen für die Teilnahme | Keine |
| 8 | Einpassung in Musterstudienplan | 1. Semester |
| 9 | Verwendbarkeit des Moduls | Master Zell- und Molekularbiologie |
| 10 | Studien- und Prüfungsleistungen | PL: mündlicher Seminarvortrag (20 Min.) |
| 11 | Berechnung Modulnote | Seminarvortrag 100% der Modulnote |
| 12 | Turnus des Angebots | Jährlich im WiSe |
| 13 | Arbeitsaufwand in Zeitstunden | Präsenzzeit: VOR/SEM + UE = 120 h
Eigenstudium: 105 h |
| 14 | Dauer des Moduls | 1 Semester, vierwöchiges Blockpraktikum |
| 15 | Unterrichts- und Prüfungssprache | Deutsch |
| 16 | Literaturhinweise | Janeway, Immunobiology, 7 ed., chapter 1-5 |
| 1 | Module name | Genetic Models in Immunobiology
| | | Genetische Modelle der Immunobiologie
| | | 7.5 ECTS-Punkte |
| 2 | Courses/lectures | Laboratory course: 7 SWS
| | | Seminar: 1 SWS (for both, attendance is compulsory) |
| 3 | Lecturers | Profs. L. Nitschke, T. Winkler |
| 4 | Module co-ordinator | Prof. Dr. Lars Nitschke |
| 5 | Content | Seminar:
| | | Lectures about lymphocyte differentiation, humoral immune response, signal transduction in lymphocytes and genetic mouse models in immunology. The students write an English essay about selected topics of the lectures.
| | | Laboratory course:
| | | The practical class comprises experiments with genetically modified mouse lines. These experiments analyse the influence of essential proteins for lymphocyte development, signalling, formation of antibodies and immune responses. |
| 6 | Learning targets and skills | The students
| | | − are able to discuss and explain findings, concepts and methods in adaptive immunity, with an emphasis on genetic mouse models;
| | | − can evaluate current research results in immunology and can summarize them in a written essay;
| | | − can develop and plan a new experiment;
| | | − can perform and analyse experiments independently;
| | | − can handle modern laboratory machines;
| | | − can present the results of their experiments in an oral English presentation. |
| 7 | Recommended prerequisites | none |
| 8 | Integration in curriculum | 1. Semester |
| 9 | Module compatibility | Master Zell- und Molekularbiologie |
| 10 | Method of examination | PL: written examination (45 min.)
| | | PL: written essay (approx. 10 pages)
| | | SL: Seminar talk (20 min.) |
| 11 | Grading procedure | written examination 60 %
| | | written essay 40% |
| 12 | Module frequency | once per year, WiSe |
| 13 | Workload | Contact hours: 120 h
<p>| | | Independent study: 105 h |
| 14 | Module duration | 1 semester (4 consecutive weeks) |
| 15 | Teaching language | English |
| 16 | Recommended reading | Janeway, Immunobiology, 7 ed., chapter 1-5 |</p>
<table>
<thead>
<tr>
<th>1</th>
<th>Modulbezeichnung</th>
<th>Mikrobiologie 1: Pathogenitätsfaktoren bei Gram-negativen Bakterien Microbiology 1: Mechanisms of pathogenicity in Gram-negative bacteria</th>
<th>7,5 ECTS-Punkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Lehrveranstaltungen</td>
<td>VORL und SEM (1 SWS) UE (7 SWS), Anwesenheitspflicht</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Lehrende</td>
<td>Prof. S. Backert, Dr. N. Tegtmeyer</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Modulverantwortlicher</td>
<td>Prof. Dr. Steffen Backert</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Inhalt</td>
<td>VORL/SEM: Vorstellung von molekularen Pathogenitätsmechanismen in Gram-negativen Bakterien, Vorstellung methodischer Ansätze zur Charakterisierung bakterieller Virulenzfaktoren, Präsentation aktueller Forschungsergebnisse. UE: Die Übungen dienen dem individuellen Erlernen experimenteller Methoden zur Charakterisierung von bakteriellen Virulenzfaktoren und setzen sich jeweils aus aktuellen Fragestellungen der Arbeitsgruppe zusammen.</td>
<td></td>
</tr>
</tbody>
</table>
| 6 | Lernziele und Kompetenzen | Die Studierenden
- können die Konzepte und methodische Ansätze zur Pathogenität von Prokaryoten erklären und im Kontext diskutieren;
- sind in der Lage, neueste Forschungsergebnisse in diesem Fachgebiet kritisch zu besprechen und zu hinterfragen;
- können den Inhalt von wissenschaftlichen Originalartikeln erarbeiten, die verwendeten Methoden/Ergebnisse erklären und kritisch bewerten und in einer Posterpräsentation diskutieren;
- werden befähigt, selbstständige Experimente zu den aktuellen, methodischen Ansätzen zu planen, durchzuführen und auszuwerten;
- sind in der Lage anwendungs-specifische Messgeräte fachgerecht zu bedienen. |
| 7 | Voraussetzungen für die Teilnahme | Keine |
| 8 | Einpassung in Musterstudienplan | 1. oder 2. Semester |
| 9 | Verwendbarkeit des Moduls | Master „Zell- und Molekularbiologie“ |
| 10 | Studien- und Prüfungsleistungen | PL: schriftliches Protokoll (ca. 30 Seiten)
PL: mündlicher Seminarvortrag (20 Min.) |
| 11 | Berechnung Modulnote | schriftliches Protokoll 50%, mündlicher Seminarvortrag 50% |
| 12 | Arbeitsaufwand in Zeitstunden | Präsenzzeit: VOR/SEM + UE = 120 h
Eigenstudium: 105 h |
| 13 | Turnus des Angebots | Jedes Semester |
| 14 | Dauer des Moduls | 1 Semester, vierwöchiges Blockpraktikum |
| 15 | Unterrichts- und Prüfungssprache | Deutsch |
| 16 | Literaturhinweise | Salyers & Whitt “Bacterial Pathogenesis”, ASM Press;
Cossart et al. “Cellular Microbiology”, ASM Press;
Alberts et al. „Molecular Biology of the Cell“, Garland;
Brock “Mikrobiologie”, Pearson;
Aktuelle Original-Übersichtsartikel aus Fachzeitschriften |
| 1 | Modulbezeichnung | Mikrobiologie 2: Pathogenitätsfaktoren bei Gram-positiven Bakterien Microbiology 2: Mechanisms of pathogenicity in Gram-positive bacteria | 7,5 ECTS-Punkte |
| 2 | Lehrveranstaltungen | VORL und SEM (1 SWS) UE (7 SWS), Anwesenheitspflicht |
| 3 | Lehrende | Prof. Dr. A. Burkovski Dr. L. Bäumer |
| 4 | Modulverantwortlicher | Prof. Dr. Andreas Burkovski |
| 7 | Voraussetzungen für die Teilnahme | Keine |
| 8 | Einpassung in Musterstudienplan | 2. Semester |
| 9 | Verwendbarkeit des Moduls | Master Zell- und Molekularbiologie |
| 10 | Studien- und Prüfungsleistungen | PL: mündliche Prüfung (20 Min.) PL: mündlicher Seminarvortrag (20 Min.) |
| 11 | Berechnung Modulnote | mündliche Prüfung: 50 % mündlicher Seminarvortrag: 50 % |
| 12 | Turnus des Angebots | Jährlich im SoSe |
| 13 | Arbeitsaufwand in Zeitspannen | Präsenzzeit: VOR/SEM + UE = 120 h Eigenstudium: 105 h |
| 14 | Dauer des Moduls | 1 Semester, vierwöchiges Blockpraktikum |
| 15 | Unterrichts- und Prüfungssprache | Deutsch |
| 1 | Modulbezeichnung | MPP 1: Membranproteine
MPP1: Membrane proteins | 7,5 ECTS-Punkte |
|---|---|---|---|
| 2 | Lehrveranstaltungen | VORL und SEM (1 SWS)
ÜE (7 SWS), Anwesenheitspflicht |
| 3 | Lehrende | Prof. P. Dietrich
Drs. R. Stadler, F. Klebl |
| 4 | Modulverantwortlicher | Dr. Franz Klebl |
| 6 | Lernziele und Kompetenzen | Die Studierenden können die Mechanismen des Stofftransports über Biomembranen erklären und unterscheiden. Sie sind weiterhin in der Lage, unterschiedliche Methoden zur Analyse der Transportfunktionen anzuwenden. Sie sind fähig, neueste Arbeitsmethoden einzusetzen und entsprechende Experimente zu planen und durchzuführen. Sie sind in der Lage neueste Fachpublikationen zu exzerpieren und vorzustellen sowie kritisch zu hinterfragen |
| 7 | Voraussetzungen für die Teilnahme | Keine besonderen Voraussetzungen nötig |
| 8 | Einpassung in Musterstudienplan | 1. Semester |
| 9 | Verwendbarkeit des Moduls | Master Zell- und Molekularbiologie |
| 10 | Studien- und Prüfungsleistungen | PL: mündliche Prüfung (30 Min.)
SL: mündlicher Seminarvortrag (20 Min.) |
| 11 | Berechnung Modulnote | Mündliche Prüfung: 100 % |
| 12 | Turnus des Angebots | Jährlich im WiSe |
| 13 | Arbeitsaufwand in Zeitstunden | Präsenzzeit: VOR/SEM + UE = 120 h
Eigenstudium: 105 h |
| 14 | Dauer des Moduls | 1 Semester, vierwöchiges Blockpraktikum | |
| 15 | Unterrichts- und Prüfungssprache | Deutsch |
| 16 | Literaturhinweise | Keine |
| 1 | Modulbezeichnung | MPP 2: Ionenkanäle und Signaltransduktion MPP 2: Ionic channels and signal transduction | 7,5 ECTS-Punkte |
| 2 | Lehrveranstaltungen | Vorlesung und SEM (1 SWS) UE (7 SWS), Anwesenheitspflicht |
| 3 | Lehrende | Prof. Dr. P. Dietrich, Drs. R. Stadler, F. Klebl |
| 4 | Modulverantwortliche | Prof. Dr. Petra Dietrich |
| 6 | Lernziele und Kompetenzen | Die Studierenden können unterschiedliche Methoden zur Untersuchung der Protein-Protein Interaktion erklären und diskutieren; sind in der Lage, Methoden zur Untersuchung der Signaltransduktion in Pflanzen anzuwenden und im Kontext zu diskutieren; verstehen die aktuellen Methoden der Membranproteinaanalyse und die theoretischen Grundlagen des Membrantransports und können diese erklären und unterscheiden; können Forschungsergebnisse im Fachgebiet kritisch diskutieren; können den Inhalt eines wissenschaftlichen Primärartikels erarbeiten, die verwendeten Methoden/Ergebnisse erklären und kritisch bewerten und in einem Vortrag fachgruppengerecht präsentieren und diskutieren; sind fähig, Experimente zu planen, durchzuführen und experimentelle Daten zu analysieren sowie anwendungsspezifische Messgeräte zu bedienen. |
| 7 | Voraussetzungen für die Teilnahme | Keine |
| 8 | Einpassung in Musterstudienplan | 1. bis 3. Semester |
| 9 | Verwendbarkeit des Moduls | M. Sc. Zell- und Molekularbiologie |
| 10 | Studien- und Prüfungsleistungen | PL: mündliche Prüfung (30 Min.) SL: mündlicher Seminarvortrag (20 Min.) |
| 11 | Berechnung Modulnote | Mündliche Prüfung (100%) |
| 12 | Turnus des Angebots | Jährlich im WiSe |
| 13 | Arbeitsaufwand in Zeitstunden | Präsenzzeit: VOR/SEM + UE = 120 h; Eigenstudium: 105 h |
| 14 | Dauer des Moduls | 1 Semester, vierwöchiges Blockpraktikum |
| 15 | Unterrichts- und Prüfungssprache | Deutsch |
| 16 | Literaturhinweise | Keine |
| 1 | Modulbezeichnung | PBMA: Biosynthese pflanzlicher Naturstoffe
PBMA: Biosynthesis of plant natural products
Kann voraussichtlich nicht im WiSe 2020 angeboten werden | 7,5 ECTS-Punkte |
|---|---|---|---|
| 2 | Lehrveranstaltungen | VORL und SEM (1 SWS)
UE (7 SWS), Anwesenheitspflicht |
| 3 | Lehrende | Prof. W. Kreis;
Drs. J. Munkert, C. Rieck |
| 4 | Modulverantwortlicher | Prof. Dr. Wolfgang Kreis |
| 5 | Inhalt | Vom Gen zum Protein zum Naturstoff. Enzyme der von Naturstoffbiosynthese
(Cardenolide, Monoterpene, Glucosinolate) werden kloniert, in *E. coli* und Hefe exprimiert,
gereinigt und funktional charakterisiert. Methoden: Anzucht, RNA, DNA, PCR, Klonierung,
Plasmide, rekombinantes Protein, Funktion-Assays, GC, HPLC, Proteinreinigung |
| 6 | Lernziele und Kompetenzen | Die Studierenden
− können die Biosynthese pflanzlicher Naturstoffe, besonders Steroide, umfassend
erklären und diskutieren;
− sind fähig, die aktuellsten fachbezogenen Arbeitsmethoden und deren Anwendung
darzustellen und zu klären;
− sind fähig, fachbezogene Experimente zu planen und durchzuführen;
− können anwendungs-spezifische Messgeräte bedienen;
− können die Versuche der Übungen auswerten und die Ergebnisse in einem Protokoll
darstellen sowie kritisch diskutieren.
− können den aktuellen Stand der Fachliteratur darstellen und selbständig Internet
Recherchen durchführen;
− sind in der Lage, neueste Forschungsergebnisse zur Bildung pflanzlicher Naturstoffe
kritisch zu besprechen und zu hinterfragen;
− erweitern aufgrund der Teamfähigkeit ihre Sozialkompetenzen;
− sind sich in ihrem Handeln der ethischen Verantwortung bewusst. |
| 7 | Voraussetzungen für die Teilnahme | Absolvierung BA-PB Kurs wünschenswert |
| 8 | Einpassung in Musterstudienplan | 1. Semester |
| 9 | Verwendbarkeit des Moduls | M. Sc. Zell- und Molekularbiologie |
| 10 | Studien- und Prüfungsleistungen | PL: mündliche Prüfung (30 Minuten)
PL: mündlicher Seminarvortrag (20 Min.)
SL: schriftliches Protokoll (ca. 30 Seiten) |
| 11 | Berechnung Modulnote | mündliche Prüfung: 70 %
mündlicher Seminarvortrag: 30 % |
| 12 | Turnus des Angebots | Jährlich im WiSe |
| 13 | Arbeitsaufwand in Zeitstunden | Präsenzzeit: VOR/SEM + UE = 120 h
Eigenstudium: 105 h |
<p>| 14 | Dauer des Moduls | 1 Semester, vierwöchiges Blockpraktikum |
| 15 | Unterrichts- und Prüfungssprache | Deutsch |</p>
<table>
<thead>
<tr>
<th>Nummer</th>
<th>Inhalt</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Modulverantwortlicher</td>
<td>Prof. Dr. Johann Helmut Brandstätter</td>
</tr>
</tbody>
</table>
| 6 | Lernziele und Kompetenzen | Die Studierenden:
- können aktuelle Themen und Konzepte der Neurobiologie umfassend erklären und diskutieren;
- können den Inhalt eines wissenschaftlichen Primärartikels erarbeiten, die verwendeten Methoden/Ergebnisse erklären und kritisch bewerten und in einem englischen Vortrag fachgruppengerecht präsentieren und diskutieren;
- sind in der Lage verschiedene mikroskopische Verfahren und ausgewählte zell- und neurobiologische Arbeitstechniken an tierischen Zellen und Geweben anzuwenden;
- können anwendungs-spezifische Messgeräte bedienen;
- sind fähig, Ergebnisse aus den durchgeführten Experimenten in einem Protokoll darzustellen und kritisch zu deuten. |
| 7 | Voraussetzungen für die Teilnahme | Keine |
| 8 | Einpassung in Musterstudienplan | 2. Semester |
| 9 | Verwendbarkeit des Moduls | Master Zell- und Molekularbiologie |
| 10 | Studien- und Prüfungsleistungen | PL: mündlicher englischer Seminarvortrag (30 Min.)
PL: mündliche Prüfung (30 Min.)
PL: schriftliches Protokoll (ca. 20 Seiten) |
| 11 | Berechnung Modulnote | Die Teilleistungen gehen jeweils zu einem Drittel in die Benotung ein. |
| 12 | Turnus des Angebots | Jährlich im SoSe |
| 13 | Arbeitsaufwand in Zeitstunden | Präsenzzeit: VORL/SEM + UE = 120 h
Selbststudium: 105 h |
| 14 | Dauer des Moduls | 1 Semester, vierwöchiges Blockpraktikum |
| 15 | Unterrichts- und Prüfungssprache | Deutsch und Englisch |
| 16 | Literaturhinweise | Mark F. Bear et al., Neuwissenschaften, Spektrum Akademischer Verlag Heidelberg;
Georg F. Striedter, Neurobiology: A functional approach, Oxford University Press |

32
| 1 | Modulbezeichnung | Molekulare Neurophysiologie
Molecular neurobiology | 7,5 ECTS-Punkte |
| 2 | Lehrveranstaltungen | VORL und SEM (1 SWS)
UE (7 SWS), Anwesenheitspflicht |
| 3 | Lehrende | Prof. Dr. Andreas Feigenspan,
Dr. Norbert Babai |
| 4 | Modulverantwortlicher | Prof. Dr. Andreas Feigenspan |
| 5 | Inhalt | VORL/SEM:
UE:
| 6 | Lernziele und Kompetenzen | Die Studierenden
− können die neuesten Erkenntnisse, Konzepte und methodischen Ansätze der molekularen Neurowissenschaften erklären und diskutieren;
− können wissenschaftliche Originalarbeiten aus diesem Fachgebiet fachgruppengerecht auf Englisch präsentieren und kritisch hinterfragen;
− sind fähig, grundlegend wichtige zell- und molekularbiologische Arbeitstechniken anzuwenden und zu erklären sowie modernste elektrophysiologische und bildgebende Methoden darzustellen und in den Übungen durchzuführen;
− sind in der Lage, anwendungsspezifische Messgeräte bedienen;
− können Ergebnisse aus den durchgeführten Experimenten in einem Protokoll darstellen und kritisch deuten. |
| 7 | Voraussetzungen für die Teilnahme | Keine |
| 8 | Einpassung in Musterstudienplan | 2. Semester |
| 9 | Verwendbarkeit des Moduls | Master Zell- und Molekularbiologie
Master Integrated Life Sciences |
| 10 | Studien- und Prüfungsleistungen | PL: mündlicher englischer Seminarvortrag (30 Min.)
PL: mündliche Prüfung (30 Min.)
PL: schriftliches Protokoll (ca. 20 Seiten) |
| 11 | Berechnung Modulnote | Die Teilleistungen gehen jeweils zu einem Drittel in die Benotung ein. |
| 12 | Turnus des Angebots | Jährlich im SoSe |
| 13 | Arbeitsaufwand in Zeitstunden | Präsenzzeit: VOR/SEM + UE = 120 h
Eigenstudium: 105 h |
| 14 | Dauer des Moduls | 1 Semester, vierwöchiges Blockpraktikum |
| 15 | Unterrichts- und Prüfungssprache | Deutsch und Englisch |
| 16 | Literaturhinweise | Mark F. Bear et al., Neurowissenschaften, 2009, Spektrum Akademischer Verlag Heidelberg;
Guido Hermey et al., Der Experimentator: Neurowissenschaften, 2010, Spektrum Akademischer Verlag Heidelberg |
| 1 | Module name | Cellbiology: Signal proteins
| | Zellbiologie: Signalproteine | 7.5 ECTS credits |
| 2 | Courses/lectures | Seminar: 1 SWS
| | Laboratory Course: 7 SWS (for both, attendance is compulsory) |
| 3 | Lecturers | Prof. B. Kost,
| | Dr. M. Ntefidou und Mitarbeiter |
| 4 | Module co-ordinator | Prof. Dr. Benedikt Kost |
| 5 | Contents | Theoretical (VORL/SEM) and practical (laboratory course; UE) introduction into the following topics:
| | - control of cellular polarization through integrated signaling,
| | - *in vivo* localization & dynamics of signaling proteins,
| | - *in vivo* & *in vitro* interactions between signaling proteins,
| | - *knock-out* & overexpression of signaling proteins.
| | VORL/SEM: Discussion of recent scientific papers.
| | UE: Execution of experiments closely related to ongoing research & practical training in the application of the following techniques: yeast 2-hybrid assay, pull-down assay, SDS-PAGE, GFP tagging, *in vivo* epifluorescence and confocal microscopy, plant transformation, qPCR, Southern blotting, molecular cloning. |
| 6 | Learning targets and skills | Students
| | - can explain and discuss the topics listed in the content section, and understand their relevance
| | - are familiar with current knowledge concerning these topics, and are capable of proposing approaches to further advance this knowledge;
| | - are able to critically assess scientific publications dealing with the listed topics, and can identify suitable strategies to extend the work presented in these publications;
| | - are capable of presenting in a literature seminar the results of a published scientific study as well as the methods on which this study is based;
| | - are able to plan as well as execute reasonable and informative experiments relevant to the listed topics, and as a consequence of regular participation in the UE can operate all equipment required for these experiments;
	- are capable of writing a protocol that summarizes and critically discusses their own results generated in the UE	
7	Recommended prerequisites	None
8	Integration in curriculum	From semester 2 onwards
9	Module compatibility	M.Sc. Zell- und Molekularbiologie
10	Method of examination	PL: written examination (45 min.)
	PL: seminar talk (30 min.)	
	PL: written protocol (approx. 20 pages)	
11	Grading procedure	Each PL counts one-third
12	Module frequency	SoSe
13	Workload	Contact hours: 120 h
	Independent study: 105 h	
14	Module duration	1 semester (4 consecutive weeks)
15	Teaching language	English
16	Recommended reading	None
Modulbezeichnung: Zellbiologie: Lichtsignaling in Algen
Cell biology: Light signaling in algae
7,5 ECTS-Punkte

Lehrveranstaltungen
VORL und SEM (1 SWS)
UE (7SWS), Anwesenheitspflicht

Lehrende
Prof. Dr. G. Kreimer

Modulverantwortlicher
Prof. Dr. Georg Kreimer

Inhalt
VORL/SEM:
Vertiefte Betrachtung und Besprechung neuester Forschungsergebnisse und Methoden aus dem Gebiet der Licht-abhängigen Signaltransduktion bei Pflanzen und Algen; Geißeln von *Chlamydomonas reinhardtii* als Modell zum Verständnis von Signaltransduktionsprozessen in eukaryotischen Geißeln.

UE:

Lernziele und Kompetenzen
Die Studenten/innen:
− können am Beispiel des Modellorganismus *Chlamydomonas reinhardtii* neue Ergebnisse, Konzepte und methodische Ansätze aus dem Fachgebiet erklären sowie Grundmethoden der Zell- und Molekularbiologie darstellen und anwenden;
− sind befähigt, neue Forschungsergebnisse vorzustellen, einzuordnen und kritisch zu hinterfragen sowie in einem Vortrag fachgruppengerecht zu präsentieren und zu diskutieren;
− können selten vermittelte zellbiologisch-biochemische Techniken, wie Ultrazentrifugation und 2D-Elektrophoresen, anwenden und erklären;
− sind fähig, fachbezogene Experimente zu planen und durchzuführen;
− können anwendungs-spezifische Messgeräte bedienen;
− können die Versuche des Übungsteils auswerten und die Ergebnisse in einem Protokoll darstellen sowie kritisch diskutieren.

Voraussetzungen für die Teilnahme
Keine

Einpassung in Musterstudienplan
1. Semester

Verwendbarkeit des Moduls
Master Zell- und Molekularbiologie

Studien- und Prüfungsleistungen
PL: mündliche Prüfung (30 Min)
PL: mündlicher Seminarvortrag (30 Min)
PL: schriftliches Protokoll (ca. 20 Seiten)

Berechnung Modulnote
Die Teilleistungen gehen jeweils zu einem Drittel in die Benotung ein.

Turnus des Angebots
Jährlich im WiSe

Arbeitsaufwand in Zeitstunden
Präsenzzeit: VORL/SEM + UE = 120h
Eigenstudium: 105h

Dauer des Moduls
1 Semester, vierwöchiges Blockpraktikum

Unterrichts- und Prüfungssprache
Deutsch

Literaturhinweise
Keine
<table>
<thead>
<tr>
<th></th>
<th>Modulbezeichnung</th>
<th>Zellbiologie: Signaltransduktion</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Cell biology: Signal transduction</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7,5 ECTS-Punkte</td>
</tr>
<tr>
<td>2</td>
<td>Lehrveranstaltungen</td>
<td>VORL/SEM (1 SWS)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>UE (7 SWS), Anwesenheitspflicht</td>
</tr>
<tr>
<td>3</td>
<td>Lehrende</td>
<td>Drs. M. Lebert, P. Richter</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dr. Michael Lebert</td>
</tr>
<tr>
<td>5</td>
<td>Inhalt</td>
<td>Theoretische und praktische Einarbeitung in folgende Themenbereiche</td>
</tr>
<tr>
<td></td>
<td></td>
<td>− Intrazelluläre Signaltransduktion am Beispiel der Licht und Schwerkraft gesteuerte Signaltransduktionsketten von einzelligen Flagellaten</td>
</tr>
<tr>
<td></td>
<td></td>
<td>− Identifikation von Signaltransduktionskettengliedern</td>
</tr>
<tr>
<td></td>
<td></td>
<td>− Kombination von physiologischen, biochemischen und molekularbiologischen Methoden zur Charakterisierung von Signaltransduktionsketten</td>
</tr>
<tr>
<td></td>
<td></td>
<td>− Besprechung aktueller Literatur (VORL/SEM)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>UE: Durchführung forschungsnaher Experimente und praktisches Training in der Anwendung folgender Techniken:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>− Computergestützte Bildverarbeitung, RNAi, Elektroporation, RT-PCR, qPCR, Western-Blotting, Transkriptomanalyse, BLAST</td>
</tr>
<tr>
<td>6</td>
<td>Lernziele und Kompetenzen</td>
<td>Die Studierenden</td>
</tr>
<tr>
<td></td>
<td></td>
<td>− sind in der Lage, die Bedeutung, den aktuellen Wissenstands sowie die Ansätze zur weiteren Analyse der Signaltransduktion in Zellen umfassend zu erklären und zu diskutieren;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>− können Veröffentlichungen des Lerngebietes kritisch beurteilen;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>− verfügen über die Selbstkompetenz der Kommunikationsfähigkeit;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>− können den Inhalt eines wissenschaftlichen Primärartikels erarbeiten, die verwendeten Methoden/Ergebnisse erklären und kritisch bewerten und in einem Vortrag fachgruppengerecht präsentieren und diskutieren;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>− können die Methoden zur Untersuchung der Fragestellungen des Lerngebietes erklären und anwenden;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>− können anwendungsspezifische Messgeräte bedienen;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>− können die Versuche des Übungsteils auswerten und die Ergebnisse in einem Protokoll darstellen sowie kritisch diskutieren.</td>
</tr>
<tr>
<td>7</td>
<td>Voraussetzungen für die Teilnahme</td>
<td>Keine</td>
</tr>
<tr>
<td>8</td>
<td>Einpassung in Musterstudienplan</td>
<td>1. Semester</td>
</tr>
<tr>
<td>9</td>
<td>Verwendbarkeit des Moduls</td>
<td>Master Zell- und Molekularbiologie</td>
</tr>
<tr>
<td>10</td>
<td>Studien- und Prüfungsleistungen</td>
<td>PL: mündliche Prüfung (30 Min.)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PL: mündlicher Seminarvortrag (20 Min.)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PL: schriftliches Protokoll (ca. 20 Seiten)</td>
</tr>
<tr>
<td>11</td>
<td>Berechnung Modulnote</td>
<td>Die Teilleistungen gehen jeweils zu einem Drittel in die Benotung ein.</td>
</tr>
<tr>
<td>12</td>
<td>Turnus des Angebots</td>
<td>Jährlich im WiSe</td>
</tr>
<tr>
<td>13</td>
<td>Arbeitsaufwand in Zeitstunden</td>
<td>Präsenzzeit: 120 h, Eigenstudium: 105 h</td>
</tr>
<tr>
<td>14</td>
<td>Dauer des Moduls</td>
<td>1 Semester, vierwöchiges Blockpraktikum</td>
</tr>
<tr>
<td>15</td>
<td>Unterrichts- und Prüfungssprache</td>
<td>Deutsch</td>
</tr>
<tr>
<td>16</td>
<td>Literaturhinweise</td>
<td>Keine</td>
</tr>
</tbody>
</table>
Nicht-biologische Orientierungsmodule
<table>
<thead>
<tr>
<th></th>
<th>Modulbezeichnung</th>
<th>Immunologie Immunology</th>
<th>7,5 ECTS-Punkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Lehrveranstaltungen</td>
<td>VORL und SEM (1 SWS) UE (7 SWS), Anwesenheitspflicht</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Modulverantwortlicher</td>
<td>Prof. Dr. Hans-Martin Jäck</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Inhalt</td>
<td>Theorie (Vorlesungen und Seminare) • Workshop über Präsentationstechniken und Verfassen von wissenschaftlichen Manuskripten (durch Dozenten) • Studentenreferate o Übersichtsvorträge über ausgewählte immunologische Themen (Klausurstoff) o Präsentation einer immunologischen Schlüsselentdeckung anhand einer Originalpublikation o Vortrag über den Praktikumsversuch Praktische Arbeit (Übung) Jeder Student erhält vor Beginn des Moduls eine aktuelle immunologische Fragestellung, erarbeitet einen Versuchsplan und führt diesen in 3 Wochen in einem ausgewählten Labor unter der Betreuung eines Dozenten durch.</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Lernziele und Kompetenzen</td>
<td>Die Studierenden − können immunologischen Schlüsselentdeckungen und die neuesten Erkenntnisse und Konzepte der Physiologie und Pathologie des Immunsystems erklären und diskutieren; − sind in der Lage, neueste Forschungsergebnisse in diesem Fachgebiet kritisch zu besprechen, zu hinterfragen und fachgruppengerecht zu präsentieren; − können die aktuellsten Arbeitsmethoden der Immunologie erklären und im Kontext der Fragestellung anwenden; − sind in der Lage, Experimente zu planen und durchzuführen und die Ergebnisse mündlich und schriftlich zu präsentieren; − können anwendungs-spezifische Messgeräte bedienen; − können die Versuche des Übungsteils auswerten und die Ergebnisse in einem Protokoll darstellen sowie kritisch diskutieren.</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Voraussetzungen für die Teilnahme</td>
<td>Keine</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Einpassung in Musterstudienplan</td>
<td>1. Semester</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Verwendbarkeit des Moduls</td>
<td>Master Zell- und Molekularbiologie</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Studien- und Prüfungsleistungen</td>
<td>PL: mündlicher Seminarvortrag (ca. 20 Min.) PL: schriftliches Protokoll (ca. 20 Seiten)</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Berechnung Modulnote</td>
<td>Gemittelte Note aus den Noten des Seminarvortrags und des Protokolls</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Turnus des Angebots</td>
<td>Jährlich im WiSe (November)</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Arbeitsaufwand in Zeitstunden</td>
<td>Präsenzzeit: Theorie und Labor = 120 h Eigenstudium: 105 h</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Dauer des Moduls</td>
<td>1 Semester, vierwöchiges Blockpraktikum (November)</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Unterrichts- und Prüfungssprache</td>
<td>Deutsch</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Literaturhinweise</td>
<td>Bachelor-Vorlesung Konzepte der Immunologie; Janeway Immunobiologie Infos: http://www.molim.uni-erlangen.de oder https://www.molim.med.fau.de/</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Modulbezeichnung</td>
<td>Immunologie und Molekulare Mikrobiologie von Infektionskrankheiten</td>
<td>7,5 ECTS-Punkte</td>
</tr>
<tr>
<td>---</td>
<td>--</td>
<td>---</td>
<td>-----------------</td>
</tr>
<tr>
<td>2</td>
<td>Lehrveranstaltungen</td>
<td>VORL und SEM (1 SWS)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>UE (7 SWS), Anwesenheitspflicht</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Lehrende</td>
<td>Dr. Schleicher/Dr. Petter (Koordination), Prof. C. Bogdan, S. Krappmann, R. Lang, J. Mattner, D. Vöhringer Drs. D. Soulat, A. Lührmann, C. Schwartz</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Modulverantwortliche</td>
<td>Dr. Ulrike Schleicher / Dr. Michela Petter</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Inhalt</td>
<td>VORL / SEM</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>UE</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Lernziele und Kompetenzen</td>
<td>Die Studierenden</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• können Mechanismen der Pathogenität von Erregern und der Infektionsabwehr erklären und diskutieren</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• können den Inhalt eines wissenschaftlichen Primärartikels aus dem Fachgebiet erarbeiten, die verwendeten Methoden/Ergebnisse erklären und kritisch bewerten und in einem Referat sachgerecht präsentieren und diskutieren</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• können aktuell gängige Arbeitsmethoden der Immunologie und molekularen Mikrobiologie erklären und im Kontext der Fragestellung anwenden;</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• sind in der Lage, Experimente zu planen und durchzuführen und die Ergebnisse schriftlich in einem Protokoll zusammenzufassen;</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• können anwendungsspezifische Messgeräte bedienen;</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Voraussetzungen für die Teilnahme</td>
<td>Keine</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Einpassung in Musterstudienplan</td>
<td>1. Semester</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Verwendbarkeit des Moduls</td>
<td>Master Zell- und Molekularbiologie</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Studien- und Prüfungsleistungen</td>
<td>PL: Seminarvortrag mit Diskussion zur Theorie des Moduls (ca. 20+10 Min.) PL: schriftliches Protokoll (ca. 10-15 Seiten)</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Berechnung Modulnote</td>
<td>50% Seminarvortrag + Diskussion (Theorie), 50% Protokoll (Praxis)</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Turnus des Angebots</td>
<td>Jährlich im WiSe (November)</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Arbeitsaufwand in Zeitstunden</td>
<td>Präsenzzeit: Theorie und Labor= 120 h</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Eigenstudium: 105 h</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Dauer des Moduls</td>
<td>1 Semester, vierwöchiges Blockpraktikum (November)</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Unterrichts- und Prüfungssprache</td>
<td>Deutsch</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Modulbezeichnung</td>
<td>Lehrveranstaltungen</td>
<td>Lehrende</td>
</tr>
<tr>
<td>---</td>
<td>----------------</td>
<td>---------------------</td>
<td>----------</td>
</tr>
<tr>
<td>1</td>
<td>Molekulare Humangenetik</td>
<td>VORL (1 SWS) UE (7 SWS), Anwesenheitspflicht</td>
<td>Profs. A. Winterpacht, A. Reis Drs. E. Ekici, C. Kraus, F. Pasutto</td>
</tr>
</tbody>
</table>

| 4 | Modulverantwortlicher | Prof. Dr. Andreas Winterpacht |

| 6 | Lernziele und Kompetenzen | Die Studierenden sind in der Lage die neuesten Erkenntnisse und Konzepte der molekularen Humangenetik zu erklären und diskutieren; sind fähig, humangenetischer Fragestellungen und Projekte selbständig zu bearbeiten; können humangenetische Fragestellungen in anderen Bereichen der biologisch-/biomedizinischen Forschung erkennen, beurteilen und entsprechende experimentelle Strategien entwickeln; können anwendungs-spezifische Messgeräte bedienen; können die Versuche des Übungsteils auswerten und die Ergebnisse in einem Protokoll darstellen sowie kritisch diskutieren. |

| 7 | Voraussetzungen für die Teilnahme | Keine |

8	Einpassung in Musterstudienplan	1. Semester
9	Verwendbarkeit des Moduls	Master Zell- und Molekularbiologie
10	Studien- und Prüfungsleistungen	PL: schriftliche Prüfung (45 Min.) St.: schriftliches Protokoll (ca. 20 Seiten)
11	Berechnung Modulnote	Schriftliche Prüfung: 100 %
12	Turnus des Angebots	Jährlich im WiSe
13	Arbeitsaufwand in Zeitstunden	Präsenzzeit: VORL + UE = 120 h Eigenstudium: 105 h
14	Dauer des Moduls	1 Semester, vierwöchiges Blockpraktikum
15	Unterrichts- und Prüfungssprache	Deutsch
16	Literaturhinweise	Keine
	Module name	Palaeobiology
Paläobiologie	7,5 ECTS-Punkte	
---	-------------	---
2	Courses/lectures	Macroevolution (SS) (2 VL)
Analytical Palaeobiology (SS) (4 UE)		
3	Lecturers	Prof. Dr. W. Kießling, Dr. K. de Baets
4	Module co-ordinator	Prof. Dr. Wolfgang Kießling
5	Contents	Lecture:
This lecture introduces large-scale evolutionary patterns and discusses underlying mechanisms. The lecture will confront students with current macroevolutionary theories. Metrics of evolutionary rates and the identification of relevant evolutionary factors are taught. The focus is on biotic and abiotic controls of extinctions and originations. Scales and hierarchies of evolution are discussed in depth, as are the causes of evolutionary trends.		
Laboratory course:		
This module presents modern methods of quantitative analyses of the fossil record. Computer exercises are introduced by short lectures on theoretical foundations. Students use R (www.r-project.org) and modify existing scripts to apply them to palaeobiological problems using data from the Paleobiology Database (www.paleobiodb.org) and other sources. Topics covered are reconstructions of biodiversity and their dynamics, measuring evolutionary rates, quality of the fossil record, and sampling standardization.		
6	Learning targets and skills	The students are able to:
− Recognize, understand and reproduce large-scale evolutionary patterns.		
− Know multi-level evolutionary theory		
− Describe the basics of phylogenetic reconstructions, the identification of evolutionary rates and relevant evolutionary factors.		
− Identify biotic and abiotic controls of extinction and origination		
− Present the proofs for a hierarchical organization of evolutionary processes		
− Understand and apply modern quantitative methods of analyzing the fossil record at large		
− Use R and tailor existing scripts for palaeobiological problems		
− Apply statistics to separate biologically meaningful signals from random noise		
7	Recommended prerequisites	Basic knowledge in electronic data processing
8	Integration in curriculum	2. Semester
9	Module compatibility	Master Zell- und Molekularbiologie
10	Method of examination	PL: written examination (approx. 45 min.)
PL: Seminar talk (20 min.).		
11	Grading procedure	Seminar talk (50%), written examination (50%)
12	Module frequency	Summer term
13	Workload	Contact hours: Lecture +Laboratory course = 120 h
Independent study: 105 h |
<p>| 14 | Modul duration | one semester |
| 15 | Teaching language | English |</p>
<table>
<thead>
<tr>
<th>1</th>
<th>Modulbezeichnung</th>
<th>Virologie</th>
<th>Virology</th>
<th>7,5 ECTS-Punkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Lehrveranstaltung/en</td>
<td>VORL und SEM (1 SWS)</td>
<td>UE (7 SWS), Anwesenheitspflicht</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Modulverantwortliche</td>
<td>Dr. Brigitte Biesinger-Zwosta</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Lernziele und Kompetenzen</td>
<td>Die Studierenden sind in der Lage, die Erkenntnisse und Konzepte der Human-Virologie umfassend zu erläutern und zu diskutieren; sind befähigt die verschiedenen modernen virologischen und molekularbiologischen Arbeitstechniken zu klären und können diese gezielt im Praxisumfeld einsetzen; sind in der Lage selbstständig Messungen durchzuführen und die erhaltenen Daten auszuwerten; können die Ergebnisse wissenschaftlicher Experimente kritisch beurteilen und in Form eines Referates fachgruppengerecht darstellen und diskutieren; können anwendungs-spezifische Messgeräte bedienen; können die Versuche des Übungsteils auswerten und die Ergebnisse in einem Protokoll darstellen sowie kritisch diskutieren.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Voraussetzungen für die Teilnahme</td>
<td>Keine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Einpassung in Musterstudienplan</td>
<td>1. Semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Verwendbarkeit des Moduls</td>
<td>Master Zell- und Molekularbiologie</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Studien- und Prüfungsleistungen</td>
<td>PL: Seminarvortrag (ca. 20 Min.) PL: mündliche Prüfung (ca. 30 Min.) SL: schriftliches Protokoll (max. 20 Seiten)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Berechnung Modulnote</td>
<td>Seminarvortrag (50%) mündliche Prüfung (50%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Turnus des Angebots</td>
<td>Jährlich im WiSe</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Arbeitsaufwand in Zeitstunden</td>
<td>Präsenzzeit: VORL/SEM + UE = 120 h Eigenstudium: 105 h</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Dauer des Moduls</td>
<td>1 Semester, vierwöchiges Blockpraktikum</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Unterrichts- und Prüfungssprache</td>
<td>Deutsch</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Literaturhinweise</td>
<td>Spezielle Literatur wird vor Modulbeginn an die Teilnehmer verteilt. Flint et al., Principles of Virology; Modrow et al., Molekulare Virologie</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Forschungsmodul
<table>
<thead>
<tr>
<th>1</th>
<th>Modulbezeichnung</th>
<th>Forschungsmodul Advanced module</th>
<th>20 ECTS-Punkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Lehrveranstaltungen</td>
<td>8 Wochen Laborkurs im gewählten Vertiefungsfach (Anwesenheitspflicht) und 4 SWS Seminar oder Vorlesung je nach Angebot des Lehrstuhls (insgesamt 20 SWS)</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Lehrende</td>
<td>Hochschullehrer der Biologie und des Studiengangs Zell- und Molekularbiologie; in Ausnahmefällen ein anderer Hochschullehrer (auf Antrag beim Prüfungsausschuss)</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Modulverantwortlicher</td>
<td>Hochschullehrer der Biologie, Immunologie, Virologie oder Humangenetik</td>
<td></td>
</tr>
</tbody>
</table>
| 5 | Inhalt | Das Vertiefungsmodul ist als die Vorbereitung zur Masterarbeit vorgesehen und besteht aus zwei wesentlichen Teilen:
− Mitarbeit an aktuellen Forschungsprojekten des Fachgebiets und
− Belegung mehrerer Spezialvorlesungen und Seminaren aus dem Angebot des jeweiligen Fachgebiets (insgesamt 4 SWS) | |
| 6 | Lernziele und Kompetenzen | Die Studierenden
− können die aktuellen Forschungsthemen des gewählten Fachgebiets erklären und diskutieren;
− sind in der Lage, neueste Forschungsergebnisse in dem Fachgebiet kritisch zu besprechen und zu hinterfragen;
− können die aktuellsten Arbeitsmethoden und deren Anwendungen in der Forschung und Entwicklung des Fachbereiches erklären;
− sind zur selbständiger Ausarbeitung komplexer Fragestellungen aus dem gewählten Bereich befähigt;
− sind fähig, sich selbständig und kontinuierlich weiterzubilden und Experimente zu planen und durchzuführen;
− können aufgrund der regelmäßigen aktiven Teilnahme anwendungs-spezifische Messgeräte bedienen. | |
| 7 | Voraussetzungen für die Teilnahme | Keine | |
| 8 | Einpassung in Musterstudienplan | 3. Semester | |
| 9 | Verwendbarkeit des Moduls | Master Zell- und Molekularbiologie | |
| 10 | Studien- und Prüfungsleistungen | PL: mündliche Prüfung 45 Min. | |
| 11 | Berechnung Modulnote | mündliche Prüfung: 100% der Modulnote | |
| 12 | Turnus des Angebots | Jedes Semester | |
| 13 | Arbeitsaufwand in Zeitstunden | 600 h | |
| 14 | Dauer des Moduls | 1 Semester | |
| 15 | Unterrichts- und Prüfungssprache | Deutsch oder Englisch (nach Wahl der Lehrveranstaltung) | |
| 16 | Literaturhinweise | Keine | |
Wahlmodule
| 1 | Modulbezeichnung | Externes Praktikum
External internship | 15 ECTS-Punkte |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Lehrveranstaltungen</td>
<td>P: Externes Praktikum mit einem Übungsanteil von ungefähr 10 SWS</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Lehrende</td>
<td>Hochschullehrer der Biologie</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Modulverantwortlicher</td>
<td>Hochschullehrer der Biologie</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Inhalt</td>
<td>Ein mindestens 6-wöchiges externes Praktikum mit einem Übungsanteil von ungefähr 10 SWS. Das externe Praktikum muss vor Antritt von einem Dozenten des Departments Biologie genehmigt werden.</td>
<td></td>
</tr>
</tbody>
</table>
| 6 | Lernziele und Kompetenzen | Die Studierenden
– erwerben Einblick in außeruniversitäre Arbeitsweise und Arbeitstechniken;
– sind fähig grundlegende Experimente selbständig zu planen und durchzuführen;
– können Daten protokollieren, interpretieren und im Rahmen der Versuchsabläufe diskutieren;
– sind zur Teamarbeit befähigt. | |
| 7 | Voraussetzungen für die Teilnahme | Keine | |
| 8 | Einpassung in Musterstudienplan | 1. und/oder 2. Semester | |
| 9 | Verwendbarkeit des Moduls | Master Zell- und Molekularbiologie | |
| 10 | Studien- und Prüfungsleistungen | SL: Praktikumsprotokoll (ca. 10 Seiten) | |
| 11 | Berechnung Modulnote | Das Modul wird mit pass/fail bewertet. | |
| 12 | Turnus des Angebots | Jedes Semester | |
| 13 | Arbeitsaufwand in Zeitstunden | 450 h | |
| 14 | Dauer des Moduls | 1 bis 2 Semester | |
| 15 | Unterrichts- und Prüfungssprache | Deutsch oder Englisch (nach Wahl des Praktikums) | |
| 16 | Literaturhinweise | Keine | |
| | Modulbezeichnung | Internes Praktikum
| | Internal Practical Course | 15 ECTS-Punkte |
| | Lehrveranstaltungen | P: Internes Praktikum mit einem Übungsanteil von ungefähr 10 SWS |
| | Lehrende | Hochschullehrer der Biologie |
| | Modulverantwortlicher | Hochschullehrer der Biologie |
| | Inhalt | Ein mindestens 6-wöchiges Laborpraktikum mit einem Übungsanteil von ungefähr 10 SWS. Das Interne Praktikum muss in einer Arbeitsgruppe am Department Biologie durchgeführt werden. |
| | Lernziele und Kompetenzen | Die Studierenden
| | | – erwerben Einblick in forschungsorientierte Arbeitsweisen und Arbeitstechniken;
| | | – sind fähig grundlegende Experimente selbständig zu planen und durchzuführen;
| | | – können Daten protokollieren, interpretieren und im Rahmen der Versuchsabläufe diskutieren;
| | | – sind zur Teamaarbeit befähigt. |
| | Voraussetzungen für die Teilnahme | Keine |
| | Einpassung in Musterstudienplan | 1. und/oder 2. Semester |
| | Verwendbarkeit des Moduls | Master Zell- und Molekularbiologie |
| | Studien- und Prüfungsleistungen | SL: Praktikumsprotokoll (ca. 10 Seiten) oder Seminarvortrag (ca. 20 Min.) |
| | Berechnung Modulnote | Das Modul wird mit pass/fail bewertet. |
| | Turnus des Angebots | Jedes Semester |
| | Arbeitsaufwand in Zeitstunden | 450 h |
| | Dauer des Moduls | 1 bis 2 Semester |
| | Unterrichts- und Prüfungssprache | Deutsch oder Englisch (nach Wahl des Praktikums) |
| | Literaturhinweise | Keine |
| | **Module name** | English UNIcert ® III
Englisch UNIcert ® III | 15 ECTS-Punkte |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Courses/lectures</td>
<td>4 Lectures/Seminars (2 SWS each + module examination)</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Lecturers</td>
<td>Lecturers of the Sprachenzentrum (Abteilung Englisch für Hörer aller Fakultäten)</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Module co-ordinator</td>
<td>Dr. Kristina Maul</td>
<td></td>
</tr>
</tbody>
</table>
| 5 | Content | These diverse language courses complete the foreign language training at level C1 GER; a variety of language courses for natural scientists are offered
− Deepening of general and subject-specific language skills in the fields of study and work
− Transfer and deepening of practically relevant written and spoken skills in subject-specific and academic contexts
− Transfer of various skills for international work and study in the Anglophone sphere. | |
| 6 | Learning targets and skills | The students
− have command of general scientific and subject-specific language knowledge and skills to a high level, which allows them to communicate regarding selected topics in their associated communication contexts using varied application of language resources.
− can understand longer general and subject-specific texts involving advanced vocabulary and structures in specific fields, extract important information from longer presentations and grasp both implicit and explicit content.
− can express themselves fluently and effectively regarding specific topics relevant to studying and work abroad, both in writing and orally using advanced structures and extensive general and subject-specific vocabulary and present their individual position in a contextualized, logical and appropriate manner.
− can decide on dedicated subject-specific language training in the area of natural sciences. | |
| 7 | Recommended prerequisites | Placement test at level 3 or 4, or successful grade at level B2 GER. | |
| 8 | Integration in curriculum | 1 semester onwards | |
| 9 | Module compatibility | Master Zell- und Molekularbiologie | |
| 10 | Method of examination | SL: Method of examination according to the chosen language course (90 min.)
SL: examination of the UNIcert III certificate. Please compare examination regulations for the UNIcert III certificate. | |
| 11 | Grading procedure | pass/fail | |
| 12 | Module frequency | WiSe and SoSe | |
| 13 | Workload | Contact hours: 120 h
Independent study: 330 h | |
| 14 | Module duration | 2 Semester | |
| 15 | Teaching language | English | |
| 16 | Recommended reading | none | |
Schlüsselqualifikation
Inhalt

Die Studierenden wählen ein Modul aus dem Angebot der Schlüsselqualifikationspools der Universität.

Schlüsselqualifikationen der FAU bilden einen eigenständigen Bereich, der nicht den studierten Fächern zuzuordnen ist. Die Studierenden können frei entscheiden, welche wichtigen Zusatzkenntnisse sie für ihr Studium und ihre berufliche Zukunft erwerben wollen. Angeboten werden Schlüsselqualifikationen aus folgenden Kategorien:

- Argumentation und Präsentation
- Sprachen
- Kultur, Geschichte, Natur und Technik
- Disziplinäre Grundkenntnisse
- Interkulturelle Kommunikation
- Praktika

Auf Antrag beim Prüfungsausschuss kann auch eine mindestens 2-jährige regelmäßige Tätigkeit in Gremien der Universität (einschließlich FSI) als äquivalente Schlüsselqualifikation anerkannt werden.

Lernziele und Kompetenzen

Die Studierenden

- erwerben berufsbezogene Kompetenzen (soft skills), die über die rein fachlichen Kenntnisse und Fähigkeiten hinausgehen, ein effektiveres Studium erlauben und sie in die Lage versetzen sollen, sich langfristig besser in der Wissenschaft oder auf dem Arbeitsmarkt zu behaupten;
- erweitern ihre Allgemeinbildung;
- erwerben disziplinenübergreifendes Wissen;

Voraussetzungen für die Teilnahme

Keine

Einpassung in Musterstudienplan

3. Semester

Verwendbarkeit des Moduls

Master Zell- und Molekularbiologie

Studien- und Prüfungsleistungen

SL: entsprechend der einschlägigen (Fach-)Prüfungsordnung

Berechnung Modulnote

Modulabhängig

Turnus des Angebots

Modulabhängig

Arbeitsaufwand in Zeitstunden

150 h

Dauer des Moduls

1 Semester

Unterrichts- und Prüfungssprache

Modulabhängig

Literaturhinweise

Modulabhängig
Scientific Presentations
| 1 | Module name | Scientific presentations
Wissenschaftliche Präsentationstechniken | 5 ECTS-Punkte |
2	Courses/lectures	SEM: Scientific Presentations (2 SWS)	5 ECTS-Punkte
3	Lecturers	Dr. V. Jackiw	
4	Module co-ordinator	Dr. Victoria Jackiw	
5	Contents	The following key qualifications will be learnt:	
Oral presentation: Prepare and present a short (15 min) PowerPoint presentation on one’s bachelor’s thesis followed by discussions and feedback			
Composition of a scientific essay: Compose an essay on a published research paper			
Discussion: Present a biological topic of choice for discussion in a group			
6	Learning targets and skills	The students	
– should be able to independently summarize their bachelor’s thesis and present it orally in English before their peers;			
– should be capable of discussing the results of their data in English;			
– should be able to independently summarize in English a published research paper in an essay;			
– should be able to apply their acquired competence in English to the writing and presenting of their master’s thesis and to their future professions.			
7	Recommended prerequisites	none	
8	Integration in curriculum	3. Semester	
9	Module compatibility	Master Zell- und Molekularbiologie	
10	Method of examination	SL: written homework (approx. 4 pages) and oral examination (20 Min.) (unbenotet)	
11	Grading procedure	Pass/fail	
12	Module frequency	WiSe	
13	Workload	Contact hours: 30 h	
Independent study: 120 h			
14	Module duration	1 Semester	
15	Teaching language	English	
16	Recommended reading	none	
1	Modulbezeichnung	Masterarbeit	
Master thesis | 30 ECTS-Punkte |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Lehrveranstaltungen</td>
<td>Masterthesis</td>
</tr>
<tr>
<td>3</td>
<td>Lehrende</td>
<td>Ein Hochschullehrer der Biologie als Betreuer, in Ausnahmefällen ein anderer Hochschullehrer (auf Antrag beim Prüfungsausschuss)</td>
</tr>
<tr>
<td>4</td>
<td>Modulverantwortlicher</td>
<td>Hochschullehrer der Biologie</td>
</tr>
</tbody>
</table>
| 5 | Inhalt | – selbständige Bearbeitung einer wissenschaftlichen Fragestellung aus dem Bereich der Molekular- und Zellbiologie innerhalb eines vorgegebenen Zeitraumes (6 Monate)
– Erstellung eines wissenschaftlichen Berichtes (Masterthesis)
– Präsentation der Ergebnisse (Kurzvortrag, ca. 30 Min.) im Rahmen eines Seminars mit anschließender Diskussion |
| 6 | Lernziele und Kompetenzen | Die Studierenden
– sind fähig innerhalb eines vorgegebenen Zeitraumes eine Problemstellung aus dem Bereich der Molekular- und Zellbiologie inklusive angrenzender Bereiche mit wissenschaftlichen Methoden selbstständig zu bearbeiten und in schriftlicher Form darzustellen (Masterthesis);
– entwickeln eigenständige Ideen und Konzepte zur Lösung wissenschaftlicher Probleme;
– gehen in vertiefter und kritischer Weise mit Theorien, Terminologien, Besonderheiten, Grenzen und Lehrmeinungen der modernen Zell- und Molekularbiologie um;
– sind in der Lage, geeignete wissenschaftliche Methoden weitgehend selbständig anzuwenden und weiterzuentwickeln –auch in neuen unvertrauten sowie fachübergreifenden Kontexten- und diese in wissenschaftlich angemessener Form darzustellen;
– können fachbezogene Inhalte klar und zielgruppengerecht schriftlich oder mündlich (z. B. die Ergebnisse der Masterarbeit in Form eines Seminarvortrags mit anschließender Diskussion) präsentieren und argumentativ vertreten;
– sind fähig erworbenen wissenschaftlichen Kompetenzen zukünftig im Beruf einzusetzen. |
| 7 | Voraussetzungen für die Teilnahme | Erwerb von mindestens 60 ECTS im bisherigen Masterstudiengang |
| 8 | Einpassung in Musterstudienplan | 4. Semester |
| 9 | Verwendbarkeit des Moduls | Master Zell- und Molekularbiologie |
| 10 | Studien- und Prüfungsleistungen | PL: schriftliche Arbeit (ca. 50 Seiten)
SL: Kurzvortrag (ca. 30 Min.) |
| 11 | Berechnung Modulnote | Note auf die schriftliche Arbeit: 100% der Modulnote |
| 12 | Turnus des Angebots | Jedes Semester |
| 13 | Arbeitsaufwand in Zeitstunden | 900 h |
| 14 | Dauer des Moduls | 1 Semester |
| 15 | Unterrichts- und Prüfungssprache | Deutsch oder Englisch |
| 16 | Literaturhinweise | Dem Themengebiet entsprechende wissenschaftliche Artikel und Fachliteratur in Absprache mit dem Betreuer |