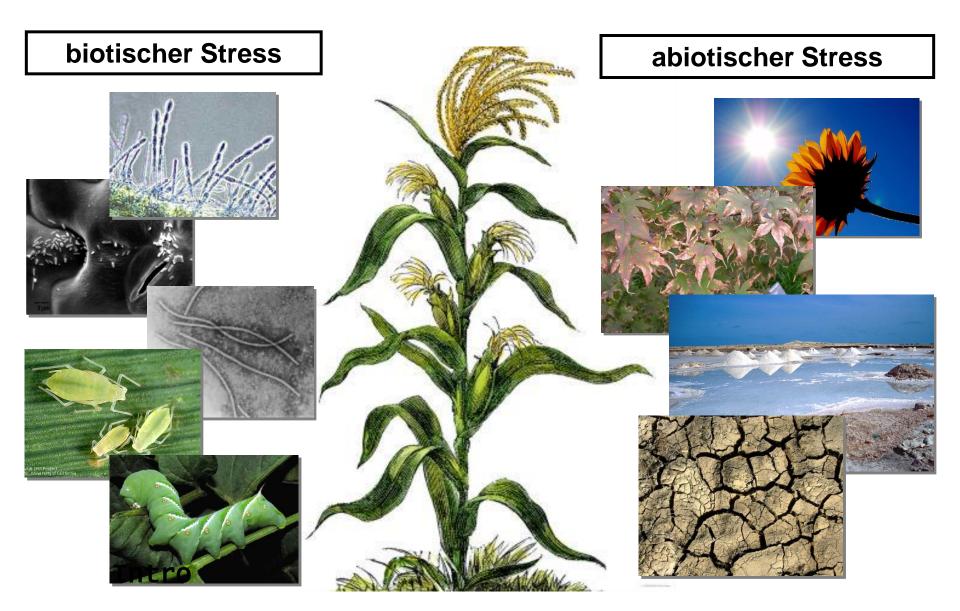
Biochemie

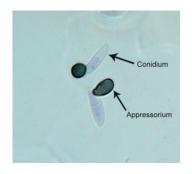
Arbeitsgruppen

- AG Jörg Hofmann
- AG Christian Koch
- AG Björn Krenz
- AG Uwe Sonnewald
- AG Sophia Sonnewald
- AG Lars Voll



Pflanzen sind unsere Lebensgrundlage

- Pflanzen produzieren
 Sauerstoff.
- Pflanzen produzieren die Energie, die wir in Form von Nahrung oder als fossile Energieträger verbrauchen.
- Pflanzen produzieren eine Menge nützlicher Inhaltsstoffe



Die Produktivität von Pflanzen wird durch biotischen und abiotischen Stress bedroht

Biochemie

- Source-Sink Wechselwirkungen bei Pflanzen
- Biochemie der Pflanzen-Mikroben Wechselwirkung
- Regulation des pflanzlichen Primärstoffwechsels
- Anpassung von Pflanzen an abiotischen Stress
- Synthetische Biologie
- Pflanzenvirologie

Molekulare Wechselwirkungen zwischen Pflanze und Umwelt

Vorlesung nur im WS (Di. 8.15 Uhr)

Ringvorlesung mit allen Dozenten der Biochemie

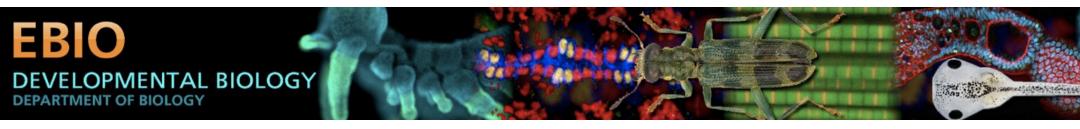
 Prüfungsleistung: Schriftliche Klausur zu den Inhalten der Vorlesung

Molekulare Wechselwirkungen zwischen Pflanze und Umwelt

- Stoffwechselregulation
 (intra- und interzelluläre Kommunikation; Sink-Source Konzept, zentraler Kohlenhydratstoffwechsel)
- Molekulare und physiologische Antwort von Pflanzen auf abiotischen Stress
- Molekularbiologie und Biochemie der Interaktion zwischen Pflanzen und mikrobiellen Pathogenen (Bakterien, Pilze)
- Biochemie der Pflanze-Virus-Interaktion
- Regulatorische RNAs (miRNA, Gene Silencing)

Praktikum - Inhalte:

- Proteinbiochemie
 (Methoden der Proteinreinigung aus Pflanzen, biochemische Charakterisierung von Proteinen)
- Molekularbiologie
 (Isolierung von RNA und DNA, PCR, RT-PCR, Klonierungen, Proteinexpression in *E. coli* und Pflanzen)
- Stoffwechselanalyse (Untersuchung von Mutanten, Bestimmung von Enzymaktivitäten und Metaboliten in Pflanzenextrakten)
- Pflanze Pathogen Interaktionen
 (Infektion von Pflanzen mit Bakterien, pflanzliche Abwehr, molekulare und biochemische Analyse von Stoffwechseländerungen)

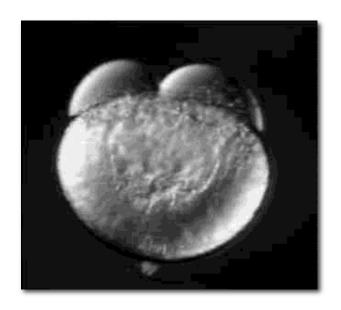

Termine für die Übung:

WS 2013/2014:
16. 01. 2016 – 10. 02. 2017

SS 2014: 24. 04. 2017 – 19. 05. 2017

- bis zu 24 Plätze pro Kurs
- Leistungen: schriftliche Protokolle zu den Versuchsteilen
 Literaturvortrag
- Prüfungsleistung: Schriftliche Klausur zu den Inhalten der Übung

Berechnung der Modulnote: 50% Teilprüfung Praktikum 50% Teilprüfung Vorlesung

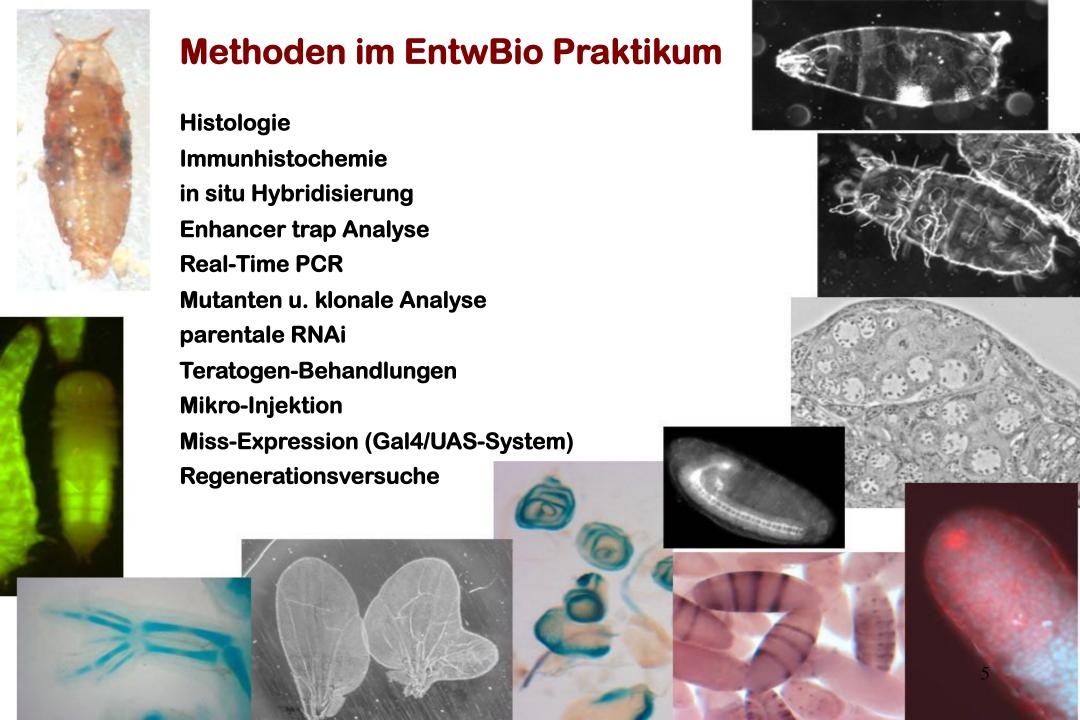


Praktikum: A) 19. September - 14. Oktober 2016

B) 17. Oktober – 11. November 2016

Klausur: am Freitag nach Praktikumsende

Wie entstehen komplexe Strukturen und Organismen aus einfach strukturierten Zellen?


Spezifische Fragestellungen in der Entwicklungsbiologie (und im Kurs):

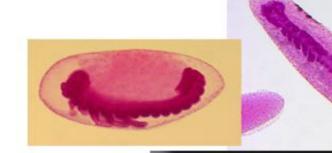
- wie werden Wachstum und Differenzierung gesteuert?
- wie entstehen biologische Muster, Formen und Gewebe?
- wie werden unabhängig entstandene Teile zu einem funktionierenden System integriert?
- wie können beschädigte Gewebe regeneriert werden?
- wie sind komplexe Baupläne in der Evolution entstanden?

Genetik/ Genomik Molekular-Zellbiologie biologie **Evolutions-**Organismische **Biologie** biologie Medizin

Organisation & Ablauf

- Inhalte in beiden Praktika (Sept.-Okt. u. Okt.-Nov.) sind weitgehend identisch
- Einteilung der Studenten in Zweiergruppen, die jeweils unterschiedliche Sonden, Gene, Mutanten etc. an einem gemeinsamen Thema bearbeiten
- Jede(r) Teilnehmer(in) präsentiert ein Mal die Ergebnisse aller Gruppen nach Abschluss des jeweiligen Experiments zum Thema
- Gemeinsame Auswertung und Diskussion der Ergebnisse der einzelnen Gruppen

Organismen im Entwicklungsbiologie-Praktikum

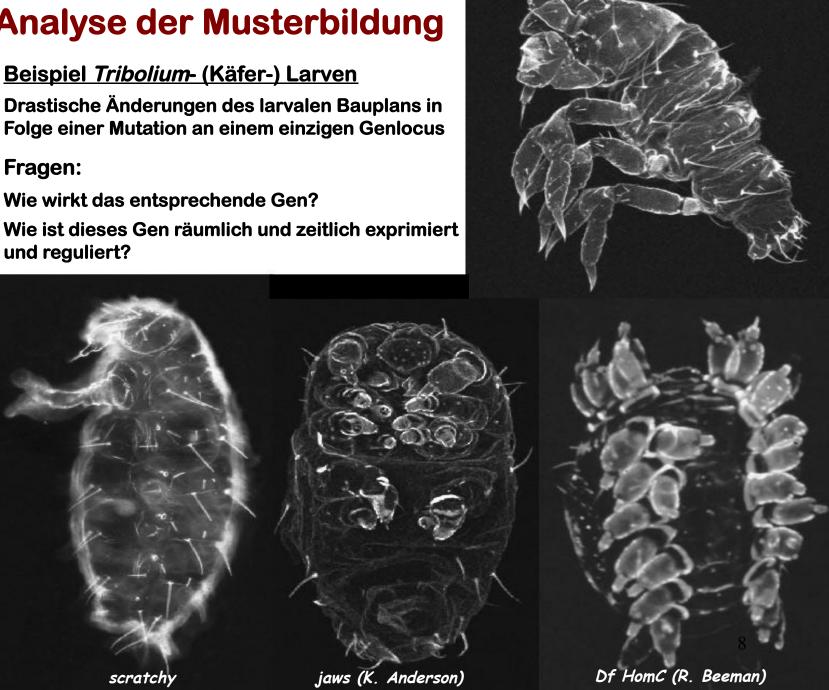

Tribolium (Käfer)

Hühnchen

Zebrafisch

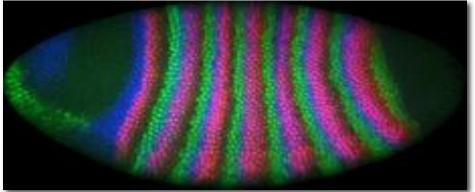
Xenopus (Frosch)

Planarien (Plattwurm)

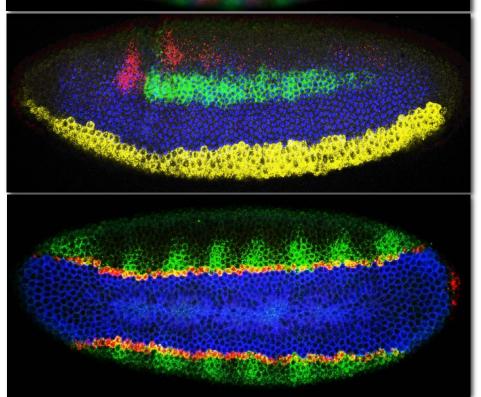


Beispiel: Insektenmodelle für Musterbildung und Organogenese

Genetische Analyse der Musterbildung

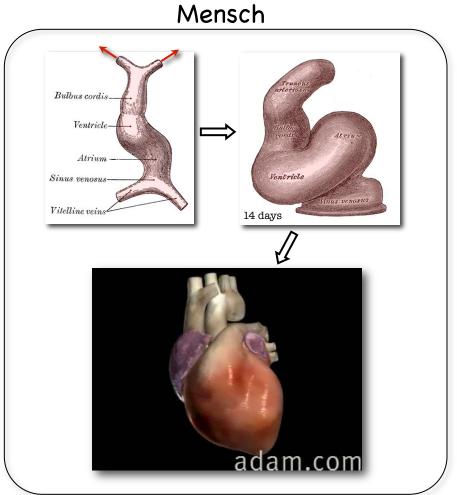


wishbone


Expressionsanalyse von Musterbildungsgenen

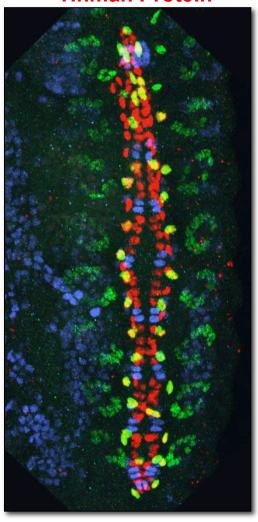
Beispiel Drosophila

Segmentierung (Antikörperfärbung)


Beispiele von *in situ* Färbungen, wie sie in ähnlicher Weise auch im Praktikum durchgeführt werden

Dorsoventral-Unterteilung (*in situ* Hybridisierungen)

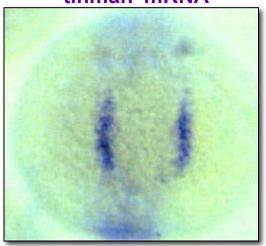
Praktikumsthema Organogenese: Beispiel Herz



Das Gen tinman kontrolliert die Herzbildung...

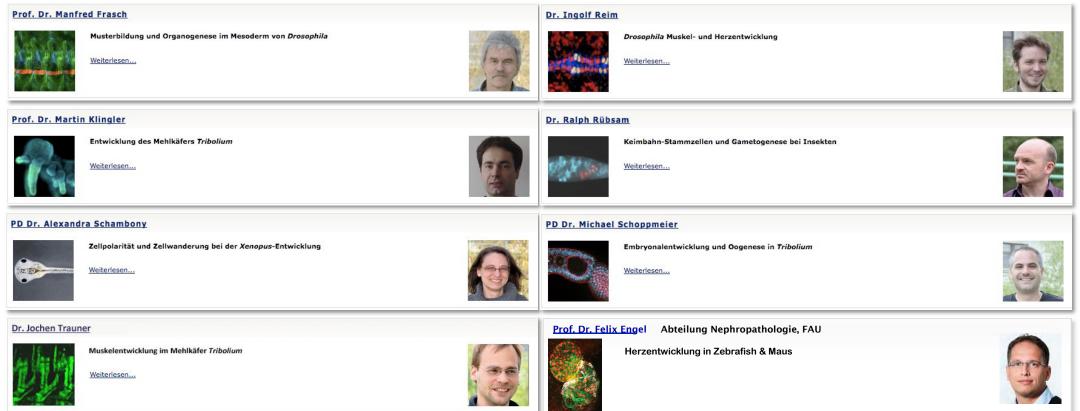
Drosophila Embryo

Tinman Protein


<u>Hühnchen-Embryo</u>

'tinman' mRNA

Zebrafisch-Embryo


'tinman' mRNA

...auch im Menschen!

Dozenten und weitere Informationen:

http://www.entwbio.nat.uni-erlangen.de/forschung/

• 2 Blöcke: Wintersemester (21.11. bis 16.12.15)

Sommersemester (24.4. bis 19.5.)

Immunogenetik – Prof. Nitschke Vorstellung

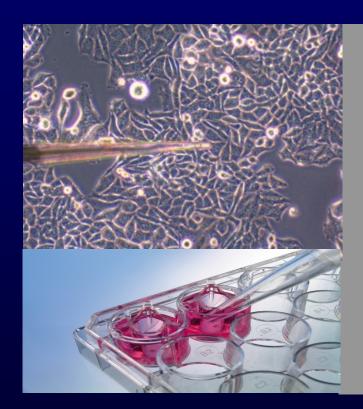
• Einschreibung im Studentenbüro, wie für alle Module

• Plätze im Winter- und 24 Plätze im

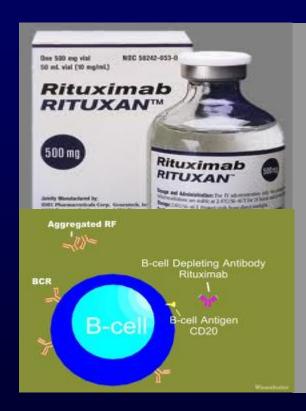
Sommersemester (geplant incl. ILS)

Platzverteilung siehe Studiendekan

Diversifizierung der Genetik Bachelormodule:


WS: Molekulargenetik

SS: Immungenetik


getrennt wählbar, jeweilige Vorlesung ist dem Praktikum angepasst!

- 1. Woche praktische Arbeit im Labor
 - Grundlagen der Molekularbiologie: kompetente Zellen, Gele, Restriktionsverdau, Ligation, Transformation, Herstellen von Plasmiden, analytische DNA Präparation (Herstellen von Reporterplasmiden)

- 2. Woche praktische Arbeit im Labor
 - Säuger Zellkultur,
 Transfektion, Luziferase
 Reporter Assays (Analyse von Promotoren und Enhancern)

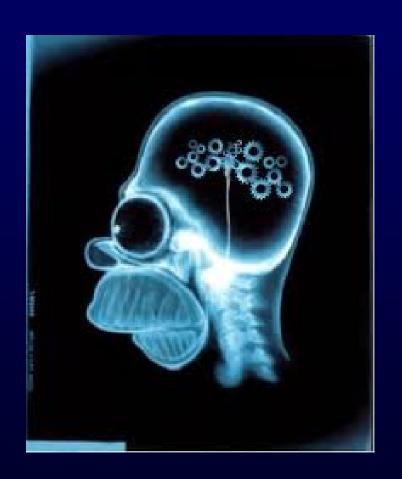
- 3. Woche praktische Arbeit im Labor
 - Antikörper vermittelte
 Reaktionen im Versuchstier
 - CD20 Depletion von B-Zellen und Analyse durch FACS, Gewebeschnitte und Färbungen

AG Nimmerjahn: Funktion von Antikörper (Fc) Rezeptoren auf Immunzellen

• Begleitend:

• Nutzung des Internets in der Biologie

• Umgang mit Primärliteratur (4. Woche ist Seminarwoche)


- Am Ende des Semesters eine 90 min Prüfung in zwei Teilprüfungen
 - 45 min Praktikumsinhalte (7.5 ECTS)
 - 45 min Bachelorblock Vorlesung (7.5 ECTS)

(WS: Nimmerjahn, Slany)
Mendel, Koppelung, Erbkrankheiten
Transkription, RNA Prozessierung
Regulation der Genexpression
Posttranskriptionelle
Expressionskontrolle
Mutation und Reparatur
Zellzyklus
Mechanismen der Tumorentstehung
Chromatin und Epigenetik

(SS: Nitschke, Winkler)
Immunologische Themen

Vielen Dank!

ILS Wahlpflichtmodule

Computational Biology ILS

Physikalisch-Biologisches ILS Wahlpflichtmodul

Bio-Fachmodul Biologie

ILS Computational Biology

15 ECTS-Punkte

Struktur

4 SWS Vorlesungen:

Di 8:00 - 10:00 Uhr SR Biologie (Böckmann)

Do 17:00 - 19:00 Uhr SR Biologie (Aizinger)

2 SWS Übungen (Böckmann, nach Absprache)

2 SWS Seminar (Böckmann, nach Absprache)

4 SWS Übung/Praktika (Aizinger)

Prüfung: Klausur

Note: 80% Klausur, 20% Vortrag

ILS Computational Biology

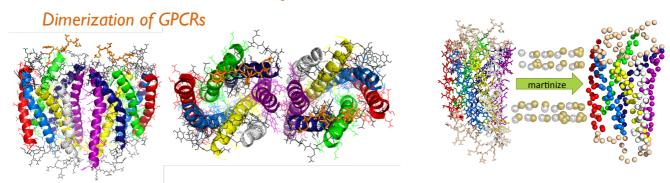
Inhalte I

grundlegende Verfahren der Numerik und Anwendungen in Biowissenschaften

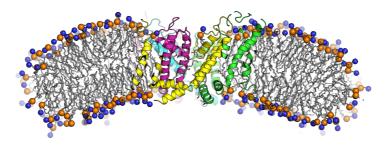
- Rechner-Arithmetik
- Interpolation und Approximation
- Splines
- Numerische Quadratur
- Lösung nichtlinearer Gleichungen und Gleichungssysteme
- Anfangswertprobleme für gewöhnliche Differentialgleichungen und Systeme der gewöhnlichen Differentialgleichungen

ILS Computational Biology

Inhalte II


skalenübergreifende Modellierung biologischer Systeme

- Statistische Thermodynamik
- Mikroskopische Modellierung von Biomolekularen
 Systemen: Freie Energie Berechnung mittels MD Simulationen
- Principal Component Analysis und Normal Mode Analysis
- Hands-On: Moleküldynamik-Simulation
- Makroskopische Modellierung biologischer Systeme
- Docking
- Membranbiophysik
- Netzwerke in der Biologie


Fachmodul Biotechnik: Zeiten

Lehrstuhl für Biotechnik

aktuelle Forschungsprojekte: Skalenübergreifende Simulationen

Protein-Induced Membrane Curvature

Kontakt: rainer.boeckmann@fau.de, 25409

ILS: Physikalisch-Biologisches Wahlpflichtmodul

9 Themenbereiche

Ca²⁺-imaging (Petra Dietrich)

Patch-clamp (Andreas Feigenspan)

Elektrophysiologie (Andreas Feigenspan)

Fluorescence correlation spectroscopy (Ben Fabry)

Microconstrictions (tba)

Kleinwinkelstreuung (Tobias Unruh)

Diffraktometrie (Reinhard Neder)

Optical Tweezer (Ben Fabry)

Langmuir-Blodgett Filmwaage (tba)

Fluorescence-activated cell sorting (FACS) (Diana Dudziak)

Ring-Vorlesungen bis Weihnachten (2 Vorlesungen pro Themenbereich)

Dienstags 18:00 - 19:30 Uhr

Freitags 8:15 – 9:45 Uhr

Ort: Hörsaal Henkestrasse 91

Praktikum mit 9 Versuchen Jan – Anfang Feb, 9-16 Uhr, zwei Tage (Mo-Fr) pro Woche 3-4 Studenten pro Gruppe

benotete Vorbereitungsaufgaben + Kolloquium

benotete Protokolle: Abgabe innerhalb von 14 Tagen

Vorstellung Bachelor-Modul

Mikrobiologie

Mikrobiologie: von der Physiologie zu Biotechnik und Medizin

Zeitplan der Wahl:

20.-21. Juni: Vorstellung der Fachmodule

22.-25. Juni: 1. Wahlrunde

28. Juni: Bekanntgabe des Wahlergebnisses

29.-30. Juni: 2. Wahlrunde

01. Juli: Bekanntgabe des Wahlergebnisses

02.-04. Juli: 3. Wahlrunde

06. Juli: Bekanntgabe des Wahlergebnisses

Mikrobiologie: von der Physiologie zu Biotechnik und Medizin

Dr. Nicole TegtmeyerPraktikum (September 2016 + Februar 2017)

Prof. Dr. Steffen Backert Vorlesung (April-Juli 2017)

1.) VL Mikrobiologie: von der Physiologie zu Biotechnik und Medizin

- Mikrobiologie-Physiologie VL (April-Juli 2017)
- Klausur i.d.R. eine Woche nach VL-Schluß (ca. Mitte Juli)
- Ziel: Verknüpfungen zur direkten Anwendung
- Fokus: Bedeutung der Mikrobiologie für die Biotechnik & Medizin
- jeder Block mit je ca. 10 Übungsfragen kombiniert
- alle VL-Folien über "Studon" abrufbar

1.) VL Mikrobiologie: von der Physiologie zu Biotechnik und Medizin

- Themen:
- Grundlagen des bakteriellen Stoffwechsels
- Citratstoffwechsel als zentrale Drehscheibe für Metabolite
- Gärungen
- Antibiotika
- Medikamentenherstellung
- Proteine für Industrie & Ernährung
- BT-Toxin und grüne Gentechnik
- Bioethanol-/Biogas-Produktion
- Methanogenese
- Chemolithotrophie
- Photosynthese
- Mikrobieller Abbau & Bioremediation
- Umweltmikrobiologie
- Mikroben im Bergbau

• . . .

1.) VL Mikrobiologie: von der Physiologie zu Biotechnik und Medizin

- Relevante Übungsaufgaben zu den einzelnen Themen werden in der Gruppe diskutiert
- Klausur setzt sich aus diesen Übungsaufgaben zusammen
- 50 % der Punktzahl zum Bestehen notwendig (Nebenfach 40 %)

2.) Praktikum - Mikrobiologische Übungen

- Anmeldung in "Mein Campus"
- Assoziiert: 4-wöchigiges Praktikum (gegliedert in sog. A-Teil und F-Teil)
- bis 50 Teilnehmer möglich (Los-Verfahren)
- A-Teil: allgemeine mikrobiologische Techniken (halbtags, Wochen 1 + 2)
 - obligatorisch, feste Gruppen, feste Arbeitszeiten
- F-Teil: Literaturseminar (Woche 1),
 - theoretische und praktische Einführung in grundlegende molekularbiologische Techniken (Woche 2)
 - 2 Versuche in Freiarbeit (Wochen 3 + 4)
 - flexible Arbeitszeiten, frei wählbar

2.) Praktikum – Mikrobiologische Übungen

A-Teil: allgemeine mikrobiologische Techniken (halbtags, Wochen 1 + 2)

- * Mikroskopie von Bakterien, Färbetechniken
- * Herstellung von Nährmedien
- Nachweis und Identifizierung von Keimen in Luft und Wasser
- * Antibiotika-Resistenzbestimmung
- * Sterilisationsversuche
- * Selektive Anreicherung von Bakterien
- * Transformation von Acinetobacter
- * Bestimmung der Phagenzahl in einem Plaque

2.) Praktikum - Mikrobiologische Übungen

F-Teil: Literaturseminar

20 min Vortrag zu aktuellen Themen aus der Mikrobiologie

Versuche (2 auswählbar)

Katabolitenrepression in *Bacillus subtilis*

Konjugation in Escherichia coli

Stickstoff-Regulation in Corynebakterien

Kinase-Phosphorylierung

Methoden

Präparation von DNA (Plasmid, chromos. DNA), RNA und Proteinen

Manipulation von DNA (Restriktion) und Proteinen (Phosphorylierung)

Protein-Liganden Wechselwirkungen in vitro / in vivo

RNA-Hybridisierung (sog. Dotblots)

Herstellung v. kompetenten Zellen (B. subtilis), Transformation

2.) Praktikum - Mikrobiologische Übungen (MÜs)

Noten im Praktikum

Vortrag im Literaturseminar

Protokolle der durchgeführten Versuche (2 Noten, gemittelt)

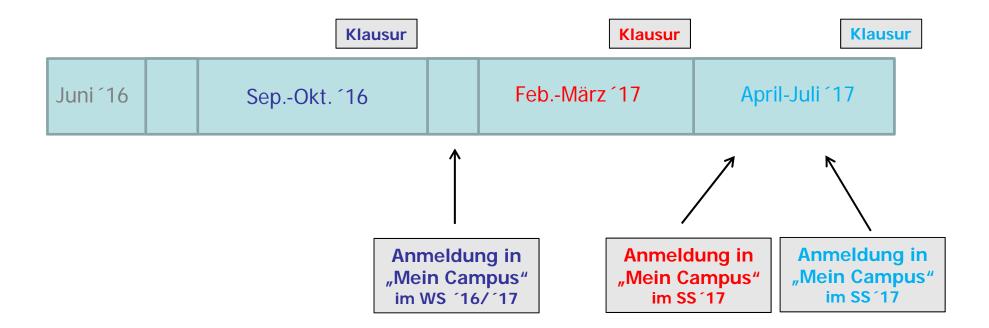
Klausur (Methoden, Versuche)

Gewichtung: 1:1:1; ergibt MÜ-Note

Klausurnote Vorlesung: zus. mit MÜ-Note → 1:1; ergibt Modul-Note

Zeitplan: Praktika (2 Termine)

ab 12.09.16


Sommersemester 2016	11.04.2016	18.04.2016	25.04.2016	02.05.2016	09.05.2016	16.05.2016	23.05.2016	30.05.2016	06.06.2016	13.06.2016	20.06.2016	27.06.2016	04.07.2016	11.07.2016	18.07.2016	25.07.2016	01.08.2016	08.08.2016	15.08.2016	22.08.2016	29.08.2016	05.09.2016	12.09.2016	19.09.2016	26.09.2016	03.10.2016
Biochemie																										
Biotechnik (Strukturbiologie)	Ì																									
Entwicklungsbiologie																								E-E	io Blo	ock I
Immunologie (MedFak)																										
Genetik																										
Geographie (Nat)																										
Geologie/Paläontolog. (Nat)																										
Mikrobiologie																							M	ikrob	iologi	ie*
Mol. Pflanzenphysiologie																										
Organische Chemie															а	b	w s	1 7	/ 1 8	3 w	i e	d e r	w	äh	lba	r
Pharmazeut. Biologie																										
Tierphysiologie																										
Virologie (MedFak)																										
Zellbiologie																							Zellb	iologi	e (Leb	pert)

ab 13.02.17

Wintersemester 2016/17	10,10,2016	17.10.2016	24.10.2016	31.10.2016	07.11.2016	14.11.2016	21.11.2016	28.11.2016	05.12.2016	12.12.2016	19.12.2016	26.12.2016	02.01.2017	09.01.2017	16.01.2017	23.01.2017	30.01.2017	06.02.2017	13.02.2017	20.02.2017	27.02.2017	06.03.2017	13.03.2017	20.03.2017	27.03.2017	03.04.2017
Biochemie																Bioch	emie	I								
Biotechnik (Strukturbiologie)		Str	ruktur	biolog	jie I																					
Entwicklungsbiologie		Е	E-Bio	Block	II																					
Immunologie (MedFak)																				mmur	nologi	е				
Genetik								Gen	etik I																	
Geographie (Nat)	Sem	estert	beglei	tende	Vorle	sung	en/Se	mina	re/Üb	unger	n mög	lich (I	Modul	lübers	icht b	eacht	ten!)									
Geologie/Paläontolog. (Nat)	Sem	estert	beglei	tende	Vorle	sung	en/Se	mina	re/Üb	unger	n mög	lich (I	Modul	lübers	icht b	eacht	en!)						_			
Mikrobiologie																			N	Mikrob	iologi	е				
Mol. Pflanzenphysiologie		MPF	P 19.1	1015	.11.!		MPP	23.11	120.	12.!									MPF	15.0	214	.03.!				
Organische Chemie																										
Pharmazeut. Biologie			Pham	n. Bio	I		P	harm	. Bio	II																
Tierphysiologie																			Ti	ierphy	siolog	jie				
Virologie (MedFak)																								Virol	ogie	
Zellbiologie		2	Zellbio	logie	T																					

Beachten Sie: Anmeldung in "Mein Campus"

Bachelor-Fachmodul Molekulare Pflanzenphysiologie

Kurs A: Mi. 19. Okt. bis Di. 15. Nov. 2016 Kurs B: Mi. 16. Nov. bis Di. 13. Dez. 2016 Kurs C: Mi. 15. Feb. bis Di. 14. März 2017

maximale Teilnehmerzahl Kurse A & B: 14 Personen maximale Teilnehmerzahl Kurs C: 16 Personen

Klausuren:

über den Praktikumsteil der Kurse A und B: Di. 20. Dez. 2016 über den Praktikumsteil des Kurses C: Di. 28. März 2017 über die praktikumsbegleitende Vorlesung: Di. 21. März 2017

Gentechnik

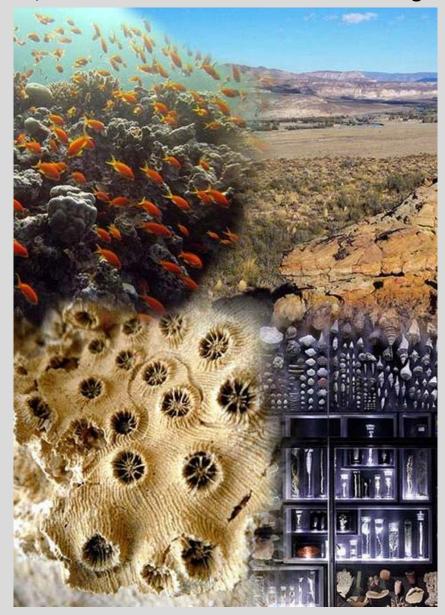
- I. Nachweis eines Reportergens in transgenen Tabakpflanzen Isolierung genomischer DNA aus Tabak Southern-Blot-Analyse
- II. Nachweis des Reportergenprodukts in transgenen Tabakpflanzen GUS-Konstrukte, Binokularmikroskopie
- III. Transiente Expression eines Reportergens in Zwiebeln und Tabak
 GFP-Konstrukte
 Particle Gun
 Konfokales Laserscanning Mikroskop (CLSM)
- IV. Immunologische Lokalisation eines Proteins in Blattstielen Dünnschnitte, Immunlokalisation Fluoreszenz-Mikroskopie

Proteinchemie

- I. Isolierung der extrazellulären Invertase von *S. cerevisiae*Rohextrakte aus Hefezellen, Ammoniumsulfatfällung und Dialyse von Proteinen, Anionenaustausch-Chromatographie
- II. Analyse der bei der Reinigung erhaltenen Fraktionen SDS-Gelelektrophorese PAS-Silberfärbung von Glykoproteinen native Gelelektrophorese und Aktivitätsfärbung Proteinbestimmung, Aktivitätsmessung, Anreicherungstabelle
- III. Derepression des ScSUC2-Gens
 Nachweis der Invertaseaktivität im gekoppelten optischen Test
 Hemmung der Glykosylierung durch Tunicamycin
 Hemmung der Proteinbiosynthese durch Cycloheximid

Isotopenverfahren

- I. Verwendung von radioaktiven Isotopen in der Biologie Mess- und Korrekturverfahren Geigerzähler, Szintillationszähler, Doppelmarkierung, Quench
- II. Induktion des Glukosetransportsystems in *Chlorella kessleri*Bestimmung der Glukosemenge durch Folin-Wu
 Aufnahmemessungen von ¹⁴C-Glukose
- III. Analyse der Transportercharakteristik Verfütterung von ¹⁴C-3-O-Methylglukose
- IV. Identifizierung radioaktiv markierter Stoffwechselprodukte Dünnschichtchromatografie, Autoradiografie
- V. Untersuchung heterologer Expression in *S.cerevisiae*Aufnahme von ¹⁴C-Saccharose durch PmSUC2 aus *Plantago major*Zellaufschluss, differentielle Zentrifugation und Western-Blot


Nebenfachmodul: Geologie – Paläontologie (Paläobiologie)

15 Plätze für Biologen Anmeldung: einfach Modul auswählen

Geländeübung

Allgemeine Paläontologie

Paläobiodiversität

Was ist

- Geologie? Die Wissenschaft vom Aufbau, von der Zusammensetzung und Struktur der Erde, ihren physikalischen Eigenschaften und ihrer Entwicklungsgeschichte, sowie der Prozesse, die sie formten und auch heute noch formen.
- Paläontologie? Die Wissenschaft die sich mit der Entwicklung der Biosphäre, des Lebens und Ökosystemen in der Erdgeschichte befasst.

Was machen wir?

- In der Fachgruppe Paläoumwelt untersuchen wir die Evolution von Ökosystemen auf langen Zeitskalen.
- Wir arbeiten heraus, welche Umweltfaktoren maßgeblich das Werden und Vergehen von Lebensgemeinschaften in der Erdgeschichte beeinflussten und welche Auswirkungen des heutigen Klimawandels auf marine Ökosysteme in Zukunft zu erwarten sind.
- Dafür kombinieren wir geologische Geländearbeit mit modernsten analytischen Methoden und statistischen Auswertungen großer paläobiologischer Datenbanken.

Modul Nebenfach Geologie/Paläontologie (15 Plätze für Biologen)

	Semester	ECTS	Zeitrahmen	Dozenten	Prüfung
Allgemeine Paläontologie (V)	SoSe	2,5	1-stündig, wöchentlich (vorauss. Mi, 12:15 - 13:00)	Höfling	Mündliche Prüfung: 15 Min. +
Geowissenschaftl. Geländeübung (Ü)	SoSe	2,5	3-tägig, April-Juni	De Baets	Bericht
Paläobiodiversität (V/Ü)	WiSe	5	3-stündig, wöchentlich (vorauss Mo, 18:15 - 20:30)	De Baets	60 Min. schriftl. Klausur
System Erde IV (V)	SoSe	5	4-stündig, wöchentlich (vorauss Mo, 13:15 - 14:45; Mi, 8:15 - 9:45)	Kiessling	60 Min. schriftl. Klausur
Summe	Total	15			

Mögliche Überschneidungen: minimal

- Semesterbegleitend, aber minimal (daher nicht berücksichtigt beim Wahlverfahren: ist vereinbar mit allem Modulen)
- Allgemeine Paläontologie, System Erde IV: wöchentliche Vorlesungen (keine Anwesenheitpflicht)
- Paläobiodiversität: Anwesenheitspflicht für Übungen (aber spezieller Termin für Biologie-Studierende, sodass es keine Überschneidungen gibt)
- 3-tägige geowissenschaftl. Geländeübung (keine Überschneidung, weil übers Wochenende)

Dozenten

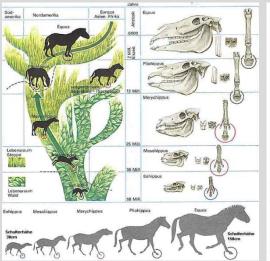
Prof. Wolfgang Kiessling (Lehrstuhl)

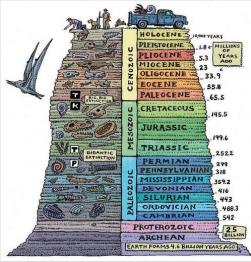
Dr. Kenneth De Baets

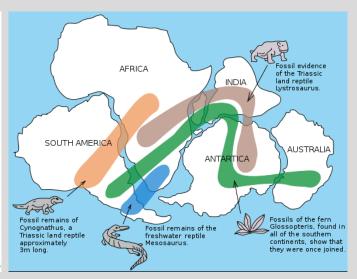
Prof. Richard Höfling

Hörsaal der Geologie Übungsraum Paläontologie

Schlossgarten 5 91054 Erlangen

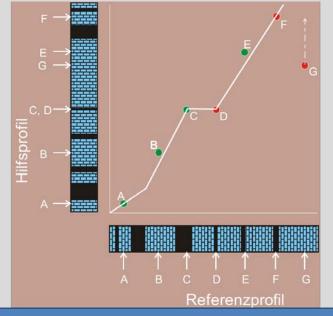



Allgemeine Paläontologie: Einführung in die Paläobiologie (Vorlesung)



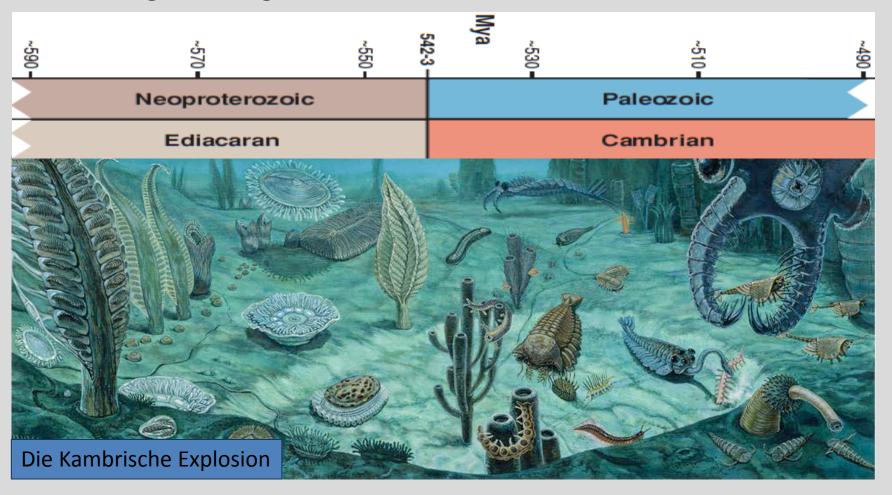
Allgemeine Paläontologie:

- Dozent: Prof. Richard Höfling
- Inhalt: Fossilisationslehre (Taphonomie),
 Systematik und Taxonomie,
 Evolutionslehre, Biostratigraphie,
 Paläoökologie, Paläobiogeographie
- Prüfungsleistung: Klausur



System Erde IV: Erd- und Lebensgeschichte (Vorlesung)

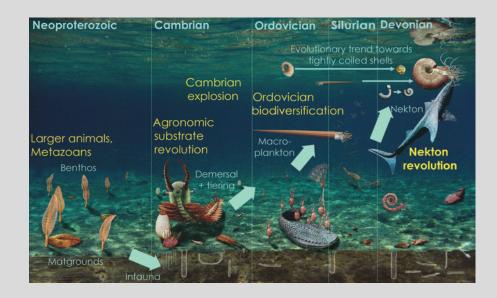
Dozent: Prof. Wolfgang Kiessling



Prinzipien der Stratigraphie

System Erde IV: Erd- und Lebensgeschichte (Vorlesung)

- Inhalt: Geschichte unseres Planeten, Überblick über die Methoden der geologischen Zeitmessung
- Prüfungsleistung: Klausur



Paläobiodiversität: Rekonstruktion von Diversität und Ökologie in der geologischen Vergangenheit (Vorlesung/Übungen)

Paläobiodiversität: Rekonstruktion von Diversität und Ökologie in der geologischen Vergangenheit (Vorlesung/Übungen)

- Dozenten: Dr. Kenneth De Baets
- Inhalt: Überblick über die einzelnen Fossilgruppen (vom Einzeller zum Dinosaurier), Evolution von Bauplänen, Übungen zur Ökologie, Baupläne im Allgemeinen, Stratigraphie
- Prüfungsleistung: Klausur

Geowissenschaftliche Geländeübung: 3-tägige geologische und paläontologische Geländearbeit (Süddeutschland, April-Juni)

Geowissenschaftliche Geländeübung: 3-tägige geologische und paläontologische Geländearbeit (Süddeutschland, Juni)

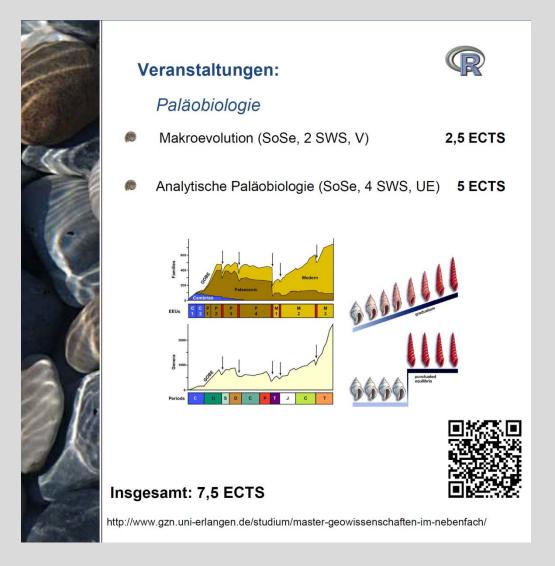
- Dozent: Dr. Kenneth De Baets
- Inhalt: Fossilien im Gesteinsverband erkennen,
 Rekonstruktion von Umweltbedingungen in der geologischen
 Vergangenheit mittels Fossilien und Gesteinen
- Prüfungsleistung: Bericht

Weitere Fragen ?

Allgemeine Fragen:

Dr. Anette Regelous (Studienberatung, GZN):

Tel: 26065, E-Mail: anette.regelous@fau.de

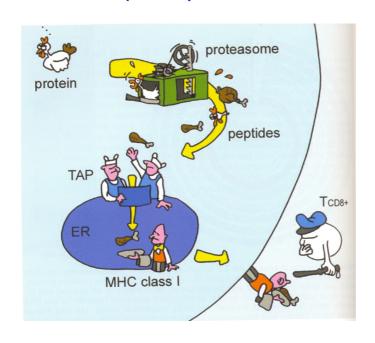

Spezifische Fragen:

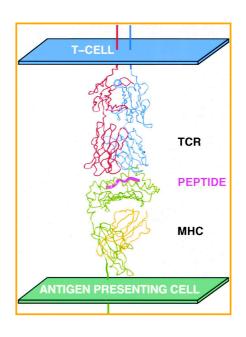
Dr. Kenneth De Baets (Dozent)

Tel: 22690, E-Mail: kenneth.debaets@fau.de

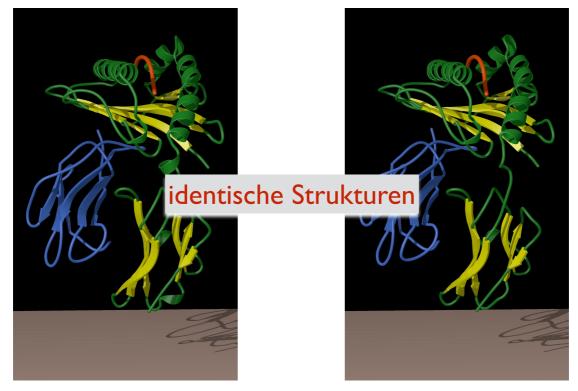
Nebenfachmodul Geowissenschaften für Master Studierende der Biologie

Fragen?


Prof. Kießling (Paläobiologie, GZN)

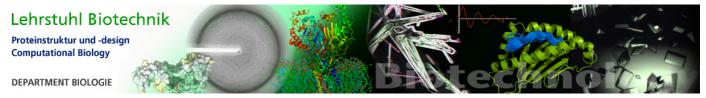

Tel.: 26959

wolfgang.kiessling@fau.de


Fachmodul Strukturbiologie

Weshalb sich Strukturen von Proteinen anschauen? MHC class I pathway

Weshalb sich die Dynamik von Proteinen anschauen?


B*2709: nicht assoziiert mit Morbus Bechterew


B*2705: assoziiert mit Morbus Bechterew

Fachmodul Strukturbiologie

Lehrstuhl für Biotechnik

Struktur, Dynamik, Funktion und Design von Biomolekülen

Fachmodul Strukturbiologie: Zeiten

Lehrstuhl für Biotechnik

Struktur, Dynamik, Funktion und Design von Biomolekülen

Für wen?

Biologie und ILS Studentinnen und Studenten

Vorlesung

Einführung in die Strukturbiologie 2 SWS im Wintersemester, montags 18-20 Uhr

Praktikum

4 Wochen Praktikum, ganztags, 2 Gruppen:

Benotung

Klausur zur Vorlesung (50%) Mündliche Prüfung zum Praktikum (20%) 2 Protokolle zum Praktikum (30%)

Fachmodul Strukturbiologie: Zeiten

Lehrstuhl für Biotechnik

Struktur, Dynamik, Funktion und Design von Biomolekülen

Vorlesung

Eigenschaften von Aminosäuren

Protein-Sekundärstrukturelemente, Vorhersage

DNA Struktur

Protein-Tertiärstruktur

Domänenstruktur von Proteinen

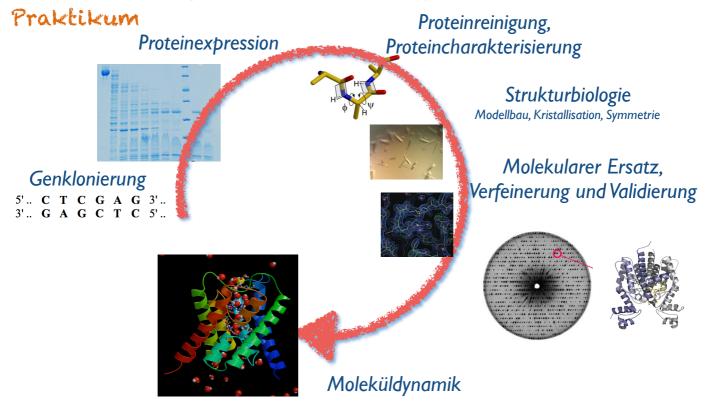
Proteinevolution

Proteinaggregation, Fibrillenbildung

Proteinfaltung, Faltungskinetik

physikalisch-chemische Grundlagen der Proteinfaltung

Methode der Moleküldynamik-Simulation


Aufbau & Struktur von biologischen Membranen

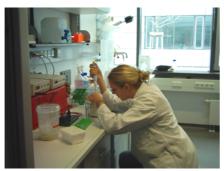
Faltung, Dynamik und Funktion von Membranproteinen

Fachmodul Strukturbiologie: Zeiten

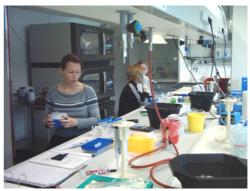
Lehrstuhl für Biotechnik

Struktur, Dynamik, Funktion und Design von Biomolekülen

de Groot & Grubmüller Science 294 (2001) 2353-2357


Fachmodul Strukturbiologie

Lehrstuhl für Biotechnik

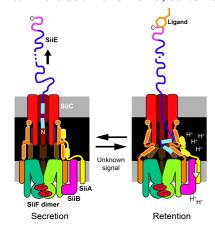

Struktur, Dynamik, Funktion und Design von Biomolekülen

Praktikum in 2er Gruppen

Fachmodul Biotechnik

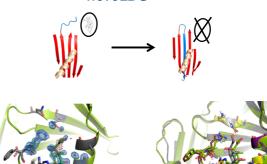
Lehrstuhl für Biotechnik

Struktur, Dynamik, Funktion und Design von Biomolekülen


Bachelorarbeit am Lehrstuhl für Biotechnik?

- WS und SoSe, Biologie und ILS
- rechtzeitige Kontaktaufnahme, Themenabsprache
- experimentelle und/oder theoretische/computergestützte Arbeiten

aktuelle Forschungsprojekte:


Proteinstruktur und -design

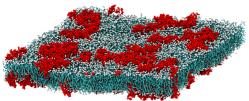
Strukturbiologie eines Salmonellen Sekretionssystems (Zusammenarbeit mit AG Henkel, Osnabrück)

Ziel: atomarer Einblick in die Funktion des SPI4 codierten Sekretionssystems

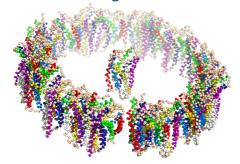
Design neuer Bindeproteine: novoLBG

Unterschied: Design - X-ray Struktur

Ziel: aktiver Hormontransport mit Ligandenfreisetzung nach proteolytischer Aktivierung

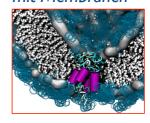

Kontakt: yves.muller@fau.de, 23082

Forschungsprojekte

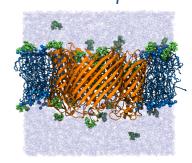

Lehrstuhl für Biotechnik

aktuelle Forschungsprojekte: Computational Biology

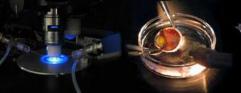
Domänenbildung in biologischen Membranen (Lipid Rafts)

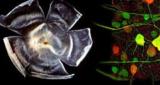


Dimerisierung von GPCR



Kontakt: rainer.boeckmann@fau.de, 25409


Interaktion von Aß-Peptiden mit Membranen



Funktion und Design von Membrantransportern

Fachmodul Tierphysiologie WS 2016/17

www.tierphys.nat.uni-erlangen.de/

Fachmodul Tierphysiologie

Vorlesung

- nur im WS 2016/17
- voraussichtlich

Do 8:15 - 9:45 Uhr

5 ECTS

Hörsaal B

Übungen + Seminar

- nur im WS 2016/17
- voraussichtlich vom

13.02.2017 - 10.03.2017

10 ECTS

Seminarraum Tierphysiologie

Kursraum J

Kursraum C

Hörsaal C

Vorlesung: Dozenten / Themen

Andreas Feigenspan

Neurobiologie

Neurophysiologie, Synapsen, Transmittersysteme, Plastizität

Andreas Gießl

Vegetative Physiologie

Herz, Orientierung, Temperatur, Exkretion, Hormone

Johann Helmut Brandstätter

Sinnesphysiologie

Schmecken, Riechen, Sehen, Hören

Übungen – Organisation

Plätze

- Max. 48 Plätze für Bachelorstudenten
- Teilnahmeberechtigt sind
 Studierende der Biologie und ILS
 nach dem 4. Semester
- Plätze werden zentral vergeben

Vorbesprechung und Gruppeneinteilung

- Termin wird während der Vorlesung und auf Studon angekündigt
- Die Übungen werden in 3-4er-Gruppen durchgeführt
- Jedes Experiment wird von einer Tutorin/einem Tutor betreut

Bitte auf Studon für die Vorlesung und für die Übungen getrennt anmelden.

Übungen – Inhalte

Übungen

- Es werden die Struktur und die Funktion der wichtigsten Organ- und Sinnessysteme experimentell untersucht.
- Die Versuche werden zum Teil am Tier durchgeführt, zum Großteil aber an den Kursteilnehmer/innen selbst.
- Zu jedem Versuch findet eine Vorbesprechung statt, die eine gründliche Vorbereitung auf den Versuch jedoch nicht ersetzt.
- Zu jedem Versuch wird ein Protokoll angefertigt, das von den Tutoren akzeptiert werden muss.
- Ein vollständig ausgefüllter Laufzettel ist Voraussetzung für die Eintragung der Note.

Seminar

- In einem Seminar werden die theoretischen Grundlagen der Versuche anhand ausgewählter Lehrbuchkapitel vorgestellt und diskutiert.
- Die Themen werden rechtzeitig zugeteilt und auf Studon bekanntgegeben.
- Ein Seminarvortrag sollte etwa 20 min dauern.

Studien- und Prüfungsleistungen

Vorlesung

- Klausur (45 min)
 - wird ca. 1 Woche nach dem letzten
 Versuchstag geschrieben

Übungen

- Klausur (45 min)
 - wird ca. 1 Woche nach dem letzten
 Versuchstag geschrieben
- Seminarvortrag (20 min)
- akzeptierte Protokolle
- Bewertung
 - 40 % Klausur
 - 10 % Seminar

Präsenzzeit: 30 Std.

Eigenstudium: 120 Std.

Präsenzzeit: 150 Std.

Eigenstudium: 150 Std.

Bachelorfachmodul Virologie für Naturwissenschaftler WS 2016/2017

Virologisches Institut - Klinische und Molekulare Virologie Universitätsklinikum Erlangen / Medizinische Fakultät

Modulverantwortliche PD Dr. med. Brigitte Biesinger-Zwosta

Brigitte.Biesinger-Zwosta@fau.de

Telefon 09131-8526447

Bachelorfachmodul Virologie

Struktur des Moduls

während der Vorlesungszeit

Vorlesung: Allgemeine Virologie • Pathogenese, Epidemiologie (2 SWS)

- Systematik, Struktur, Replikation von Viren
- Molekulare Aspekte der Virus-Wirt-Wechselwirkung
- Vorstellung ausgewählter Virusgruppen
- Diagnostik in der Virologie
- Therapie von viralen Erkrankungen
- Prophylaxe (Impfstoffe)

4-wöchiges Blockpraktikum in der vorlesungsfreien Zeit

Seminar:	 Retroviren 	HIV, SIV, Humanes 1-Zell-Leukamie Virus		
Spezielle Virusgruppen	 Herpesviren Humanes cytomegalovirus, Humanes Herpesvirus 			
(3 SWS)		Typ 8, Herpesvirus saimiri, Herpes simplex Virus,		
		Epstein-Barr-Virus		
Übungen	Experimentelle	Mitarbeit an aktuellen virologischen Fragestellungen		
(10 SWS)	in mindestens 2 unabhängigen Arbeitsgruppen des Instituts			
	in Gruppen mit je 3 Praktikanten			

Bachelorfachmodul Virologie

Termine

■ Vorlesung alternativ

im WS 2016/17 Di 18:00 - 19:30 Seminarraum Virologie Prof. U. Schubert im SS 2017 Di 18:00 - 19:30 Seminarraum Virologie N.N.

Der Besuch der Vorlesung vor dem Praktikum wird empfohlen.

Die Teilnahme an der Vorlesung ist nicht begrenzt, die Prüfung muss über Mein Campus angemeldet werden.

■ Praktikum: Übungen mit Seminar ganztägig Mo 13.03. - Fr 07.04.2017

15 Plätze werden durch das Studiendekanat Biologie an Studierende der Bachelorstudiengänge Biologie und ILS vergeben.

Ausgewählte Teilnehmer erhalten per e-mail (Adressen vom Studiendekanat / StudOn) weitere Informationen zur Vorbereitung und zur Organisation des Praktikums.

Ein obligatorischer Vorbesprechungstermin wird noch angekündigt.

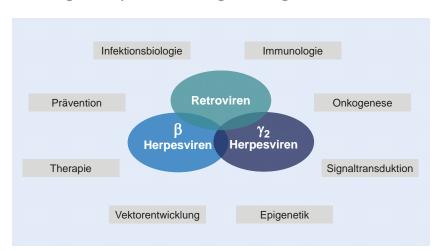
Leistungsnachweise

Vorlesuna Klausur

• Übungen mit Seminar NEU: Klausur (unbenotet: 3 Vorträge, 2 Protokolle)

2

5


vorläufiger Zeitplan für Übungen mit Seminar im März/April 2017

15. – 24.03.	27.03. – 05.04.	05. – 07.04.	
8:15 – 9:45 Einfü			
Forschungslabor 1	Forschungslabor 2	Virologische Diagnostik	
Abschlußvortrag	Abschlußvortrag	Diagnostik	
Protokoli**	Protokoll**		
	8:15 – 9:45 Einfü Forschungslabor 1	8:15 – 9:45 Einführungsvorlesung Forschungslabor 1 Forschungslabor 2 Abschlußvortrag Abschlußvortrag	

^{*} Themen und Literatur werden spätestens im Februar 2017 bekanntgegeben (e-mail/StudOn), Vorbereitungszeit und **Rücksprachen mit den Betreuern** werden vorausgesetzt.

Bachelorfachmodul Virologie

Forschungsschwerpunkte der Virologie in Erlangen

Bachelorfachmodul Virologie

Themengebiete der Referate und Forschungspraktika

einzelne Studenten bzw. Gruppen werden durch verschiedene Arbeitsgruppen betreut

Herpesviren

Thomas Stamminger
 Manfred Marschall
 Nina Reuter/
Marco Thomas
 Frank Neipel
 Armin Ensser
 Brigitte Biesinger
 HCMV: Virale Genregulation und intrinsische Immunität
 HCMV: Regulation der Virusreplikation durch Proteinkinasen
 HCMV: Regulation der Virusreplikation durch Proteinkinasen
 Humorale Immunität gegen HCMV:
Antikörper-Effektor-mechanismen gegen virale Glykoproteine
 KSHV: Virale Pathogenese und Virus-Rezeptoren
 Herpesvirus saimiri und ateles: Virale T-Zell-Onkoproteine

Retroviren

Vladimir Temchura / Klaus Überla
 Ulrich Schubert
 Thomas Gramberg
 Andrea Thoma-Kreß
 Entwicklung neuer Immunisierungsverfahren gegen HIV
 HIV: Virale und zelluläre Regulatoren der Virusreplikation
 HIV, SIV: Angeborene und intrinsische Immunität bei Retroviren
 Andrea Thoma-Kreß
 HTLV-1: Virale Mechanismen der T-Zell-Onkogenese

weitere Informationen

^{**} jeweils 3-5 Seiten Exposé pro Praktikumsteil

Themen der Einführungsvorlesung

- Sicherheitsaspekte
- Zellkultur, Virus-Vermehrung
- DNA-Methoden
- Expressionsklonierung
- PCR und Real-time PCR
- RNA-Methoden
- Mutagenese
- Protein-Methoden
- Immunologische Methoden, Apoptose-Nachweis
- Durchflusszytometrie, Fluoreszenzmikroskopie
- Protein-DNA Wechselwirkungen
- Bioinformatik in der Molekularbiologie
- Methoden der Strukturanalyse
- Imaging-Techniken

Bachelorfachmodul Virologie

Methodenspektrum im praktischen Teil

Auswahl durch die betreuenden Arbeitsgruppen abhängig vom aktuellen Forschungsprojekt

Virus-spezifische Methoden

- Virusanzüchtung
- Wachstumstransformation von T-Zellen

Zellbiologische Methoden

- Fluoreszenz-Mikroskopie
- FACS-Analysen
- Transfektion von Plasmid-DNA oder RNA
- Retrovirale Transduktion
- Proliferationsanalysen

Protein-Methoden

- Expression rekombinanter Proteine
- Westernblot
- Immunpräzipitation
- Reportergen-Analysen
- = ELISA

Gemeinsam für alle Teilnehmer

DNA-Methoden

- PCR-Techniken
- Aufreinigung (Plasmide, Bacmide)
- Klonierung
- Sequenzierung
- Modifikationsanalysen
- Chromatin-IP

RNA-Methoden

- RNA-Isolierung
- RT-PCR

Methoden und Arbeitstechniken in der virologischen Diagnostik

Bachelorfachmodul Virologie

FAQs

Ich hatte im Losverfahren kein Glück ...

... kann ich trotzdem ein Praktikum in der Virologie absolvieren?

NUR ALS ZUSÄTZLICHES PRAKTIKUM (nicht als Fachmodul anrechenbar)

Variante 1: Restplätze im Praktikum für Molekularmediziner (B. Biesinger-Zwosta)

Variante 2: individuelles Praktikum nach Absprache mit einem der Dozenten

... kann ich trotzdem meine Bachelorarbeit in der Virologie anfertigen? prinzipiell ja, nach Absprache mit einem der Dozenten

Tipps

Informationen zu den Forschungsgebieten der einzelnen Dozenten finden Sie u.a. unter http://www.virologie.uk-erlangen.de/forschung/forschergruppen-arbeitsgruppen/

Fragen Sie so früh wie möglich nach verfügbaren Plätzen!

8

9

Zellbiologie: BSc Arbeiten 16/17

Lehrstuhl Zellbiologie: Arbeitsgruppen

Prof. Benedikt Kost

Prof. Georg Kreimer

PD Michael Lebert

Slot	Zeitraum	Anzahl Plätze	Semester
1	22.08.16 - 14.10.16	4	Ferien
2	14.11.16 – 16.12.16	4	WS
3	09.01.17 - 17.02.17	4	WS/Ferien
4	27.02.17 - 14.04.17	4	Ferien/SS
5	19.06.17 – 28.07.17	4	SS/Ferien

Zellbiologie: Fachmodul 16/17 > Vorlesung

Vorlesung:

nur WS16/17

Di, 8:15 - 10:00

Zelluläre Grundlagen der pflanzlichen Entwicklung

Teil 1: Benedikt Kost

> Zytoskelett

Jan Dettmer

> Endomembransystem

> Zellteilung & -wachstum

> zelluläre Grundlagen der Morphogenese

Teil 2: Georg Kreimer

> Licht als Umweltfaktor

> Lichtperzeption & -Signaltransduktion

> Lichtgesteuerte Prozesse: in Zellen & Organentwicklung

Teil 3: Michael Lebert

> Schwerkraft als Umweltfaktor

> Schwerkraftperzeption & Signaltransduktion

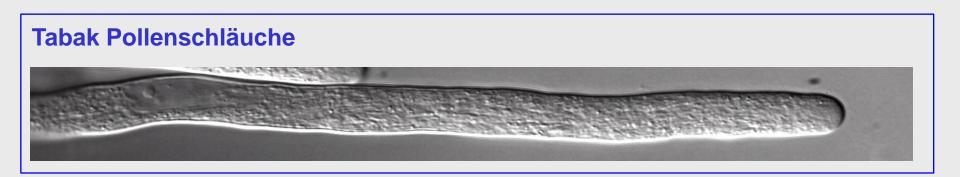
> Schwerkraft gesteuerte Prozesse: in Zellen & Organentwicklung

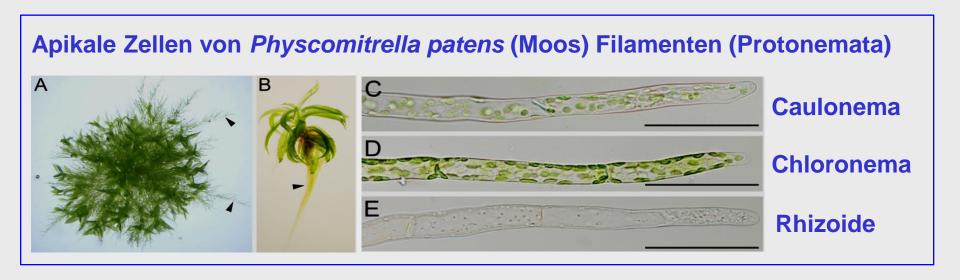
Zellbiologie: Fachmodul 16/17 > Übungen

Seminar & Block A₁ WS_{16/17} 17.10. - 11.11. 2016

Praktikum: Block A₂ SS₁₇ 22.05. - 16.06. 2017

Block B SF₁₆ 12.09. - 07.10. 2016

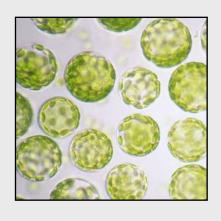

Block A & B


Woche 1 > Seminar: Literaturvorträge

- > jeder Teilnehmer stellt eine aktuelle Veröffentlichung vor
- > Themen passend zu Vorlesung und Praktikum
- > Ziele: thematische Vertiefung
 - Präsentationstechnik

Woche 2-4 > Praktikum (A: Kost/Kreimer/Lebert, B: Lebert)

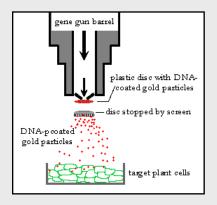
Praktikum Block A (Kost): Polares Zellwachstum



Praktikum Block A (Kost): Polares Zellwachstum

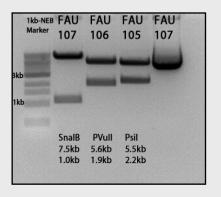
Transformation: direkter Gen-Transfer

Transformation: Expressions analyse




histochemischer **GUS** assay

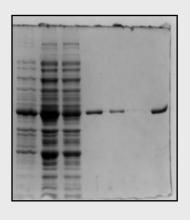
GFP Expression: Epifluoreszenz Mikroskopie


Wachstums-**Effekte**

Praktikum Block A (Kost): Polares Zellwachstum

Plasmid Maxi-Prep

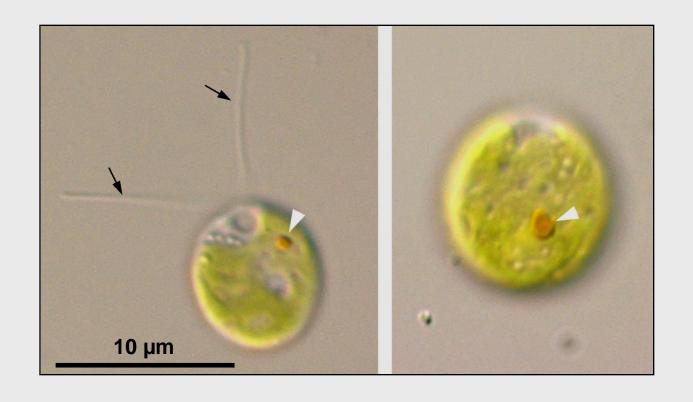
E. coli
Transformation
& Kultur


Plasmid Aufreinigung

Plasmid Restriktion

Agarose Gel-Elektrophorese

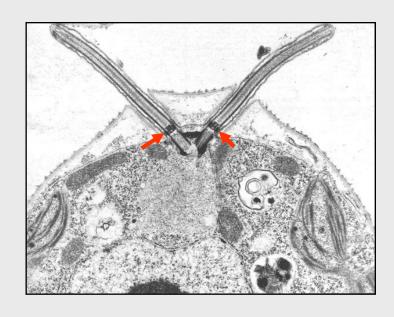
Protein (Nt-Rac5) Aufreinigung


GST Fusionsprotein Aufreinigung

SDS PA Gel-Elektrophorese

Western-Blot

ECL-Detektion

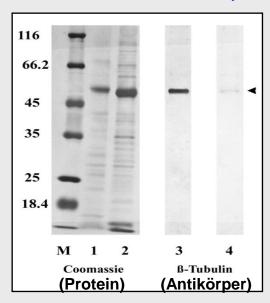

Praktikum Block A (Kreimer): Zytoskelett

Experimentelles System: Chlamydomonas reinhardtii


Praktikum Block A (Kreimer): Zytoskelett

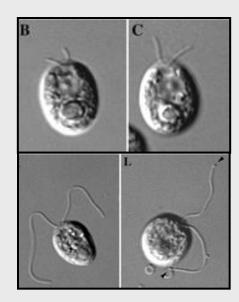
Geißel-Abwurf & Regeneration

Experimentelle Manipulation der cytosolischen

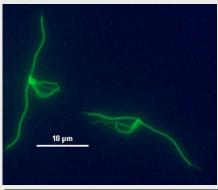

Ca²⁺-Konzentration

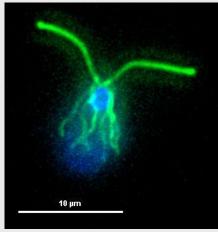
Praktikum Block A (Kreimer): Cytoskelett

Protein-Analyse


SDS Western
PAGE Blot
(akalische
PhosphataseDetektion)

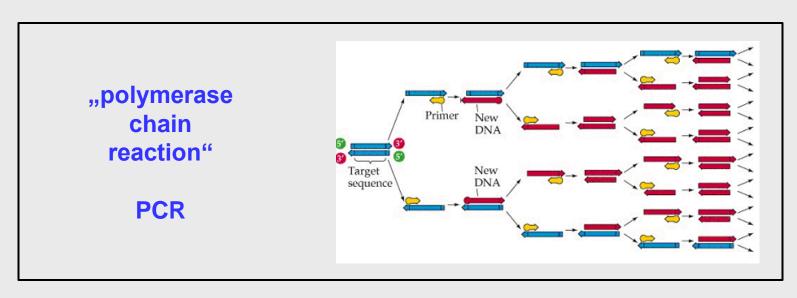
Geißeln: Proteinzusammensetzung

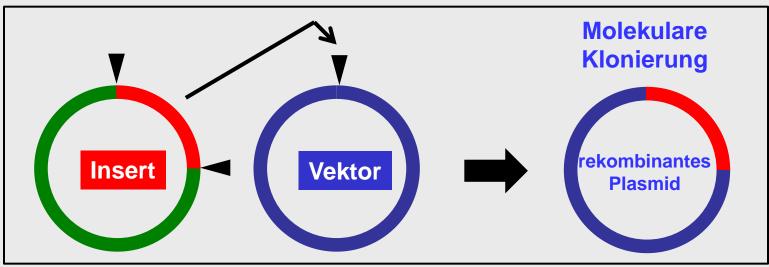

Mutanten-Analyse


phänotypische Analysen

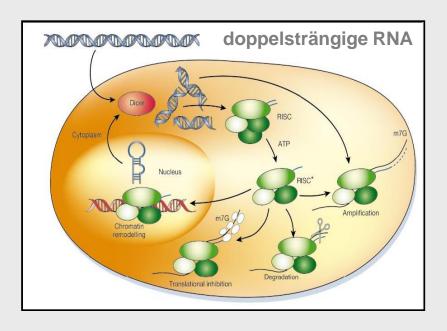
Indirekte Immun-Fluoreszenz

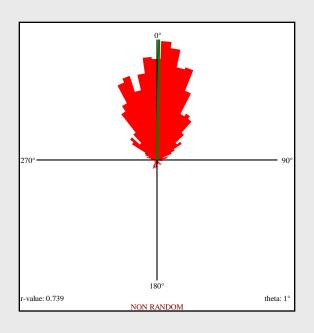
isolierte Cytoskelette




Praktikum Block A (Lebert): Schwerkraft-Perzeption

Experimentelles System: Euglena gracilis


Praktikum Block A (Lebert): Schwerkraft-Perzeption


Praktikum Block A (Lebert): Schwerkraft-Perzeption

RNAi Gen "Knock-down"

Ziel Gen: Komponente der Schwerkraft-Wahrnehmung

Digitale Bildverarbeitung

Gen "knock-down":
Effekte auf die
SchwerkraftWahrnehmung

Praktikum Block A: Systeme & Methoden

Experimentelle Systeme: Höhere Pflanzen: Tabak

Moose: Physcomitrella

Algen: Chlamydomonas

Protisten: Euglena

<u>Transformation:</u> PEG, "particle gun", Elektroporation

-> Markergen-Expression (GUS, GFP)

-> RNAi Gen "kock-down"

Molekularbiologie: PCR

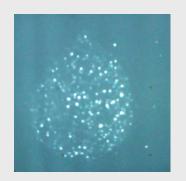
molekulare Kolonierung: DNA fragment

Plasmid Maxi Prep

Protein-Biochemie: GST Fusionsprotein: Aufreinigung

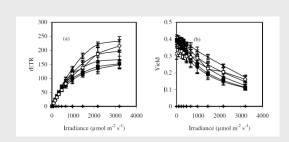
Proteinextrakte

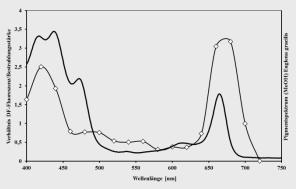
SDS PAGE


Western Blot: ECL, alk. Phosphatase

<u>Mikroskopie</u> GFP Expression, Immunfluoreszenz

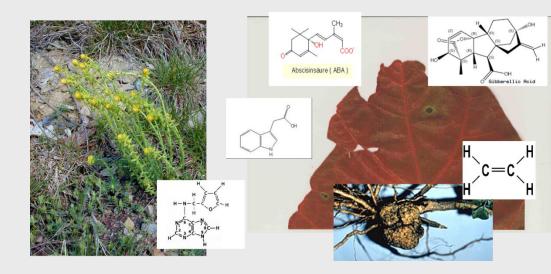
digitale Bildverarbeitung


Praktikum Block B: Systemische Biologie


Photosynthese und Pigmente

Pigmentanalyse

Einfluss äußerer Faktoren (Licht, Temperatur, Trockenstress) auf die photosynthetische Leistung


Photodynamische Reaktionen von Chlorophyll zum Abtöten von Parasiten und ihren Überträgern

Praktikum Block B: Systemische Biologie

Schutzpigmente

0.6 0.5 0.00 0.

Phytohormone

Induktion von mycosporinähnlichen Aminosäuren durch UV Keimungshemmung durch Abscisinsäure, Mobilisierung von Reservestoffen durch Giberellinsäure etc.

Organisatorisches

Seminar- E-mail: 2 Wochen vor jedem Übungs-Block

vorbereitung > 1 Veröffentlichung / Student

> Anleitung

Klausuren 1x Vorlesung & 1x Übungen > Erster Montag nach Semester

> Gesamtnote: 50% Vorlesung (Klausur), 50% Übungen

> Übungen: 20% Seminar

40% Protokolle & Mitarbeit (je 50%)

40% Klausur

Anzahl Plätze Vorlesung: 1x 42 Plätze (1x WS)

Block A: 2x 14 Plätze (1x WS, 1x SS)

Block B: 1x 14 Plätze (1x Sommerferien)

Anmeldung zentrale Vergabe: Fachschaft

Stud-ON > Susanne Mohrbach

Bewertung

WWW http://www.zellbio.nat.uni-erlangen.de/